Optimizing Small Molecule Blood-Brain Barrier Penetration

by Bidita Debnath on  July 15, 2016 at 11:20 PM Research News   - G J E 4
The current state of knowledge in designing pharmacologically active small molecules to possess physicochemical properties sufficient to engender blood-brain barrier (BBB) penetration is examined in this review.
 Optimizing Small Molecule Blood-Brain Barrier Penetration
Optimizing Small Molecule Blood-Brain Barrier Penetration

The success rate to achieve clinical approval of drugs target to central nervous system (CNS) indications is the lowest of all disease states. We review and examine the physicochemical properties of drug molecules necessary to penetrate the BBB and conclude a list of properties, that if adhered to, would provide the greatest possible chance of a designed small molecule penetrating into the brain, minimize the number of hydrogen bond donors, exclude acid functionality, engender higher lipophilicity, retain a molecular weight below 500 Da.

‘Understanding the basics of recent advances in blood-brain barrier (BBB) penetration by small molecules.’
From this, it can be seen that all of these physicochemical properties interrelate, providing a tangled web of challenges for CNS drug discovery. Above all, the pharmacophore of the small molecule responsible for the desired activity must be retained and worked into a structure that emphasizes the presented properties.

We review the concepts of BBB penetration including a discussion of the terminology of 'penetration', the physicochemical properties influencing BBB penetration, the In Silico, In Vitro and In Vivo methods and models available to measure BBB penetration, data analysis required and recommended for assessment of BBB penetration and look to forthcoming developments in the field.

This paper is meant to serve as a first point of reference for readers wishing to understand the basics of recent advances in BBB penetration by small molecules and those looking to ensure the best possible chance of designing a small molecule to enter the brain.

Source: Eurekalert

Post your Comments

Comments should be on the topic and should not be abusive. The editorial team reserves the right to review and moderate the comments posted on the site.
User Avatar
* Your comment can be maximum of 2500 characters
Notify me when reply is posted I agree to the terms and conditions

You May Also Like