Medindia LOGIN REGISTER
Medindia
Advertisement

Useful Stem Cells Separated from "Problem" Ones by Using New Method

by Kathy Jones on April 25, 2013 at 11:16 PM
 Useful Stem Cells Separated from 'Problem' Ones by Using New Method

It is well-known that pluripotent stem cells can turn, or differentiate, into any cell type in the body, such as nerve, muscle or bone.

Because these remaining pluripotent stem cells can subsequently develop into unintended cell types — bone cells among blood, for instance — or form tumors known as teratomas, identifying and separating them from their differentiated progeny is of utmost importance in keeping stem cell-based therapeutics safe.

Advertisement

Now, UCLA scientists have discovered a new agent that may be useful in strategies to remove these cells. Their research was published online April 15 in the journal Developmental Cell and will appear in an upcoming print edition of the journal.

The study was led by Carla Koehler, a professor of chemistry and biochemistry at UCLA, and Dr. Michael Teitell, a UCLA professor of pathology and pediatrics. Both are members of the Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at UCLA and UCLA's Jonsson Comprehensive Cancer Center.
Advertisement

In work using the single-celled microorganism known as baker's yeast, or Saccharomyces cerevisiae, as a model system, Koehler, Teitell and their colleagues had discovered a molecule called MitoBloCK-6, which inhibits the assembly of cells' mitochondria — the energy-producing "power plants" that drive most cell functions. The research team then tested the molecule in a more complex model organism, the zebrafish, and demonstrated that MitoBloCK-6 blocked cardiac development.

However, when the scientists introduced MitoBloCK-6 to differentiated cell lines, which are typically cultured in the lab, they found that the molecule had no effect at all. UCLA postdoctoral fellow Deepa Dabir tested the compound on many differentiated lines, but the results were always the same: The cells remained healthy.

"I was puzzled by this result, because we thought this pathway was essential for all cells, regardless of differentiation state," Koehler said.

The team then decided to test MitoBloCK-6 on human pluripotent stem cells. Postdoctoral fellow Kiyoko Setoguchi showed that MitoBloCK-6 caused the pluripotent stem cells to die by triggering apoptosis, a process of programmed cell suicide.

Because the tissue-specific daughter cells became resistant to death shortly after their differentiation, the destruction of the pluripotent stem cells left a population of only the differentiated cells. Why this happens is still unclear, but the researchers said that this ability to separate the two cell populations could potentially reduce the risk of teratomas and other problems in regenerative medicine treatment strategies.

"We discovered that pluripotent stem cell mitochondria undergo a change during differentiation into tissue-specific daughter cells, which could be the key to the survival of the differentiated cells when the samples are exposed to MitoBloCK-6," Teitell said. "We are still investigating this process in mitochondria, but we now know that mitochondria have an important role in controlling pluripotent stem cell survival."

MitoBloCK-6 is what is known as a "small molecule," which can easily cross cell membranes to reach mitochondria. This quality makes MitoBloCK-6 — or a derivative compound with similar properties — ideal for potential use as a drug, because it can function in many cell types and species and can alter the function of mitochondria in the body for therapeutic effects.

"It is exciting that our research in the one-cell model baker's yeast yielded an agent for investigating and controlling mitochondrial function in human pluripotent stem cells," Koehler said. "This illustrates that mitochondrial function is highly conserved across organisms and confirms that focused studies in model systems provide insight into human stem-cell biology. When we started these experiments, we did not predict that we would be investigating and controlling mitochondrial function in pluripotent stem cells."



Source: Eurekalert
Font : A-A+

Advertisement

Advertisement
Advertisement

Recommended Readings

Latest Genetics & Stem Cells News

New Gene Therapy to Treat Genetic Brain Disorder
NGN-401 is a first ever new gene therapy discovered to cure a rare genetic brain disorder called Rett Syndrome.
Early-Stage Stem Cell Trial for Progressive Multiple Sclerosis
Among MS patients, the stem cells showed a neuroprotective role, guarding nerve cells from further decline.
Human Genetics Unravels Mysteries of Digestive Disorders
New possibilities for research on digestive diseases have been set by complete decoding of the Y chromosome.
World's First CRISPR-Based Gene Therapy for Blood Disorders
UK has given the green light to the world's inaugural gene therapy for sickle-cell disease and thalassemia.
Genotype Linked to Short-Lifespan Affects 1 in 25 People
1 in 25 people had a genotype linked to short lifetime, which includes BRCA2 and LDLR genes, that reduced lifespan by seven years, and six years respectively.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
×

Useful Stem Cells Separated from "Problem" Ones by Using New Method Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests