Cancer can now be identified through the molecular signs and can stimulate helper T cells, which orchestrate the immune response to tumors and infectious agents.
Cancer can be recognized through the molecular signs and can arouse helper T cells, plan and carry out the immune response to tumors and infectious agents. . The study, led by David Gfeller and Michal Bassani-Sternberg of the Lausanne Branch of the Ludwig Institute for Cancer Research, is reported in the current issue of Nature Biotechnology. The new method combines two powerful new technologies.
‘The results of recent cancer vaccine studies have, moreover, indicated that helper T cells are vitally important to the induction of effective anti-tumor immune responses.’
Read More..
One is a mass spectrometry technology developed by Bassani-Sternberg’s lab to rapidly and inexpensively obtain the amino acid sequences of thousands of peptide antigens—or protein fragments—bound to a molecular complex known as HLA that is expressed on the surface of cells. The other is a novel computational tool developed in Gfeller’s lab that is based on machine learning, the computational approach that powers face-recognition software, among other things.Read More..
“This method advances our effort to find good targets for cancer immunotherapy,” says Bassani-Sternberg. “But it is not only important for vaccines and other immunotherapies. It is also a tool we will be using for basic science, to understand the interaction of cancers with the immune system better.”
Sick and cancerous cells chop up aberrant proteins associated with their disease and display fragments of those proteins on their surfaces to sound an immune alarm. They do so using two broad classes of HLA molecules: HLA-I, which activates the killer T cells that destroy cancerous or infected cells, and HLA-II, which activates helper T cells.
Distinct amino acid sequences—or binding “motifs”—direct the binding of antigenic peptides to each class of HLA molecules; those that lack such motifs are not presented by HLA molecules as targets of the immune response. Knowing those motifs thus allows researchers to select the right collection of peptides to serve as targets for (currently experimental) immunotherapies that are tailored to the unique molecular profile of an individual’s cancer.
Researchers are already quite good at identifying peptides likely to bind HLA-I. But HLA-II has proved more problematic. “Binding to HLA-II is much less well understood,” says Gfeller. “But we know from immunology that HLA-II antigen presentation to helper T cells is absolutely critical to priming the immune response.” The results of recent cancer vaccine studies have, moreover, indicated that helper T cells are vitally important to the induction of effective anti-tumor immune responses.
Advertisement
To develop their predictive model, the Ludwig Lausanne team isolated more than 99,000 peptides bound to HLA-II molecules and determined their amino acid sequences. Gfeller and his postdoc Julien Racle fed this gargantuan dataset to their machine learning algorithm, MoDec (for motif deconvolution), and had it look for HLA-II binding motifs.
Advertisement
In addition to their Ludwig Cancer Research positions, Gfeller is an associate professor at the Department of oncology UNIL CHUV and the University of Lausanne, and Bassani-Sternberg is a group leader at the Department of oncology UNIL CHUV, the Lausanne University Hospital and the University of Lausanne.
This study was supported by Ludwig Cancer Research, the Swiss Cancer League, and the ISREC Foundation.
Source-Newswise