About My Health Careers Internship MedBlogs Contact us

Thunder can Help Neuroscientists Better Analyze Huge Amounts of Brain Data

by Kathy Jones on July 28, 2014 at 9:34 PM
Font : A-A+

 Thunder can Help Neuroscientists Better Analyze Huge Amounts of Brain Data

Researchers at Howard Hughes Medical Institute's Janelia Research Campus have developed a new library of tools called Thunder that can help neuroscientists better analyze and interpret the huge amounts of data generated by technologies that monitor brain activity.

Thunder speeds the analysis of data sets that are so large and complex they would take days or weeks to analyze on a single workstation - if a single workstation could do it at all. Janelia group leaders Jeremy Freeman, Misha Ahrens, and other colleagues at Janelia and the University of California, Berkeley, report in the July 27, 2014, issue of the journal Nature Methods that they have used Thunder to quickly find patterns in high-resolution images collected from the brains of active zebrafish and mice with multiple imaging techniques.


Importantly, they have used Thunder to analyze imaging data from a new microscope that Ahrens and colleagues developed to monitor the activity of nearly every individual cell in the brain of a zebrafish as it behaves in response to visual stimuli. That technology is described in a companion paper published in the same issue of Nature Methods.

Thunder can run on a private cluster or on Amazon's cloud computing services. Researchers can find everything they need to begin using the open source library of tools at http://freeman-lab.github.io/thunder

New microscopes are capturing images of the brain faster, with better spatial resolution, and across wider regions of the brain than ever before. Yet all that detail comes encrypted in gigabytes or even terabytes of data. On a single workstation, simple calculations can take hours. "For a lot of these data sets, a single machine is just not going to cut it," Freeman says.

It's not just the sheer volume of data that exceeds the limits of a single computer, Freeman and Ahrens say, but also its complexity. "When you record information from the brain, you don't know the best way to get the information that you need out of it. Every data set is different. You have ideas, but whether or not they generate insights is an open question until you actually apply them," says Ahrens.

Neuroscientists rarely arrive at new insights about the brain the first time they consider their data, he explains. Instead, an initial analysis may hint at a more promising approach, and with a few adjustments and a new computational analysis, the data may begin to look more meaningful. "Being able to apply these analyses quickly -- one after the other -- is important. Speed gives a researcher more flexibility to explore and get new ideas."

That's why trying to analyze neuroscience data with slow computational tools can be so frustrating. "For some analyses, you can load the data, start it running, and then come back the next day," Freeman says. "But if you need to tweak the analysis and run it again, then you have to wait another night." For larger data sets, the lag time might be weeks or months.

Distributed computing was an obvious solution to accelerate analysis while exploring the full richness of a data set, but many alternatives are available. Freeman chose to build on a new platform called Spark. Developed at the University of California, Berkeley's AMPLab, Spark is rapidly becoming a favored tool for large-scale computing across industry, Freeman says. Spark's capabilities for data caching eliminates the bottleneck of loading a complete data set for all but the initial step, making it well-suited for interactive, exploratory analysis, and for complex algorithms requiring repeated operations on the same data. And Spark's elegant and versatile application programming interfaces (APIs) help simplify development. Thunder uses the Python API, which Freeman hopes will make it particularly easy for others to adopt, given Python's increasing use in neuroscience and data science.

To make Spark suitable for analyzing a broad range of neuroscience data - information about connectivity and activity collected from different organisms and with different techniques - Freeman first developed standardized representations of data that were amenable to distributed computing. He then worked to express typical neuroscience workflows into the computational language of Spark.

From there, he says, the biological questions that he and his colleagues were curious about drove development. "We started with our questions about the biology, then came up with the analyses and developed the tools," he says.

The result is a modular set of tools that will expand as the Janelia team -- and the neuroscience community -- add new components. "The analyses we developed are building blocks," says Ahrens. "The development of new analyses for interpreting large-scale recording is an active field and goes hand-in-hand with the development of resources for large-scale computing and imaging. The algorithms in our paper are a starting point."

Using Thunder, Freeman, Ahrens, and their colleagues analyzed images of the brain in minutes, interacting with and revising analyses without the lengthy delays associated with previous methods. In images taken of a mouse brain with a two-photon microscope, for example, the team found cells in the brain whose activity varied with running speed.

For analyzing much larger data sets, tools such as Thunder are not just helpful, they are essential, the scientists say. This is true for the information collected by the new microscope that Ahrens and colleagues developed for monitoring whole-brain activity in response to visual stimuli.

Last year, Ahrens and Janelia group leader Phillip Keller used high-speed light-sheet imaging to engineer a microscope that captures neuronal activity cell by cell across nearly the entire brain of an immature zebrafish. That microscope produced stunning images of neurons in the zebrafish brain firing while the fish was inactive. But Ahrens wanted to use the technology to study the brain's activity in more complex situations. Now, the team has combined their original technology with a virtual-reality swim simulator that Ahrens previously developed to provide fish with visual feedback that simulates movement.

In a light sheet microscope, a sheet of laser light scans across a sample, illuminating a thin section at a time. To enable a fish in the microscope to see and respond to its virtual-reality environment, Ahrens' team needed to protect its eyes. So they programmed the laser to quickly shut off when its light sheet approaches the eye and restart once the area is cleared. Then they introduced a second laser that scans the sample from a different angle to ensure that the region of the brain behind the eyes is imaged. Together, the two lasers image the brain with nearly complete coverage without interfering with the animal's vision.

Combining these two technologies lets Ahrens monitor activity throughout the brain as a fish adjusts its behavior based on the sensory information it receives. The technique generates about a terabyte of data in an hour - presenting a data analysis challenge that helped motivate the development of Thunder. When Freeman and Ahrens applied their new tools to the data, patterns quickly emerged. As examples, they identified cells whose activity was associated with movement in particular directions and cells that fired specifically when the fish was at rest, and were able to characterize the dynamics of those cells' activities. Example analyses like these, and example data sets, are available at the website/research.janelia.org/zebrafish/.

Ahrens now plans to explore more complex questions using the new technology, and both he and Freeman foresee expansion of Thunder. "At every level, this is really just the beginning," Freeman says.

Source: Eurekalert

News A-Z
News Category
What's New on Medindia
First-Ever Successful Pig-To-Human Kidney Transplantation
World Osteoporosis Day 2021 -
Spirituality and Mental Health
View all

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Parkinsons Disease Parkinsons Disease Surgical Treatment Brain Brain Facts Ataxia Language Areas in The Brain Ways to Improve your Intelligence Quotient (IQ) 

Recommended Reading
Clinical Trials
Clinical trials are experiments that yield useful information to clinicians if a particular ......
Clinical Trials - The Past and The Future
Many of the drugs that are used today have been discovered by chance or often by mere serendipity...
Clinical Trials - Different Phases of the trial
Clinical trials serve as a vital component for improving the treatment of medical conditions as ......
Ataxia affects coordination. Gait becomes unstable and the patient loses balance. The cerebellum or ...
Language Areas in The Brain
The mechanism of how human brain processes the language to express and comprehend the verbal, writte...
Parkinsons Disease
Parkinsonís disease is a neurodegenerative disease caused by progressive dopamine brain cells loss. ...
Ways to Improve your Intelligence Quotient (IQ)
Intelligence quotient (IQ) is a psychological measure of human intelligence. Regular physical and me...

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2021

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use