
Researchers from Brigham and Women's Hospital (BWH) are the first to report that synthetic silicate nanoplatelets (also known as layered clay) can induce stem cells to become bone cells without the need of additional bone-inducing factors. The research was published online in Advanced Materials. Synthetic silicates are made up of simple or complex salts of silicic acids, and have been used extensively for various commercial and industrial applications, such as food additives, glass and ceramic filler materials, and anti-caking agents.
Silicate nanoplatelets cause stem cells to become bone cells, as determined by the formation of bone matrix (in red). Image courtesy of Khademhosseini lab.
"With an aging population in the US, injuries and degenerative conditions are subsequently on the rise," said Ali Khademhosseini, PhD, BWH Division of Biomedical Engineering, senior study author. "As a result, there is an increased demand for therapies that can repair damaged tissues. In particular, there is a great need for new materials that can direct stem cell differentiation and facilitate functional tissue formation. Silicate nanoplatelets have the potential to address this need in medicine and biotechnology."
Source: Eurekalert
Advertisement
|
Recommended Readings
Latest General Health News




