About Careers Internship MedBlogs Contact us
Medindia LOGIN REGISTER
Advertisement

Researchers Find New Regulator in Stem Cells Vital for Heart Formation

by Kathy Jones on September 30, 2012 at 8:01 PM
Font : A-A+

 Researchers Find New Regulator in Stem Cells Vital for Heart Formation

Researchers looking at how embryonic stem cells adjust the packaging of their DNA revealed that they have identified a new regulator necessary for heart formation and added that this could provide more answers on how the stem cells go on and develop into any tissue in the body.

A stem cell has the potential to become any type of cell. Once the choice is made, the cell and other stem cells committed to the same fate divide to form organ tissue.

Advertisement

A University of Washington-led research team was particularly interested in how stem cells turn into heart muscle cells to further research on repairing damaged hearts through tissue regeneration. The leaders of the project were Dr. Charles Murry, a cardiac pathologist and stem cell biologist; Dr. Randall Moon, who studies the control of embryonic development, and Dr. John Stamatoyannopoulos, who explores the operating systems of the human genome.

The paper's lead author is Dr. Sharon Paige, a UW MD-PhD student who completed her Ph.D. in Dr. Murry's lab.

The results are published in the Sept. 28 edition of Cell.
Advertisement

Paige, an aspiring pediatric cardiologist, said, "By identifying regulators of cardiac development, this work has the potential to lead to a better understanding of the causes of congenital heart disease, thereby paving the way for therapeutic advances."

Previously UW researchers had examined the signals that prod cells to grow into various kinds of heart tissue. In this case, the researchers entered a relatively unexplored area. They decided to look at the genetic controls behind the transformation of stem cells into heart tissue.

Because stem cells keep their DNA code under wraps until needed, the scientists examined how this packaging is altered over time to permit reading of portions of the code and thereby produce changes in the cell.

DNA is wound up into a structure called chromatin. "DNA can be packaged as tightly closed, neutral or activated," Murry explained. The tightly closed state, he said, is analogous to setting the brakes on a car.

Like a child who clams up when asked, "What will you be when you grow up?" stem cells are protective of the genes that will determine their future cell type, or what scientists call their cell fate.

"We found that stem cells take great care to avoid turning on cell-fate regulating genes at the wrong time," Murry said. "These genes have their brakes on until they are needed." When the time is right, he said, "the brakes come off and the gas goes on."

He explained that the situation is different for genes that regulate cell functions, in contrast to those that regulate cell fate. Genes that control, for example, the production of proteins that allow the cell to contract or to generate electrical signals do not have such a complex braking system. Those genes can be more readily activated.



Source: Eurekalert
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
What's New on Medindia
COVID Toes
International Yoga Day 2022 - 'Yoga for Humanity'
Wearable Devices Are Now Transforming Depression, Multiple Sclerosis, and Epilepsy Management.
View all
Recommended Reading
News Archive
Date
Category
Advertisement
News Category

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Stem Cells - Cord Blood Stem Cells - Fundamentals Parkinsons Disease Surgical Treatment Genetics and Stem Cells Heart Healthy Heart Statins Mitral Valve Prolapse Aortic Valve Stenosis Bone Marrow Transplantation 

Most Popular on Medindia

Indian Medical Journals How to Reduce School Bag Weight - Simple Tips Color Blindness Calculator Iron Intake Calculator Vent Forte (Theophylline) A-Z Drug Brands in India Noscaphene (Noscapine) Blood - Sugar Chart Drug Interaction Checker Post-Nasal Drip

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2022

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use