About Careers MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

Researchers Find New Mechanism Behind Neurodegeneration in Mice

by Bidita Debnath on July 28, 2014 at 11:24 PM
Font : A-A+

 Researchers Find New Mechanism Behind Neurodegeneration in Mice

A research team have pinpointed a surprising mechanism behind neurodegeneration in mice, one that involves a defect in a key component of the cellular machinery that makes proteins, known as transfer RNA or tRNA.

The research team was led by Jackson Laboratory Professor and Howard Hughes Investigator Susan Ackerman, Ph.D. The researchers report in the journal Science that a mutation in a gene that produces tRNAs operating only in the central nervous system results in a "stalling" or pausing of the protein production process in the neuronal ribosomes. When another protein the researchers identified, GTPBP2, is also missing, neurodegeneration results.

Advertisement

"Our study demonstrates that individual tRNA genes can be tissue-specifically expressed in vertebrates," Ackerman says, "and mutations in such genes may cause disease or modify other phenotypes. This is a new area to look for disease mechanisms."

Neurodegeneration—the process through which mature neurons decay and ultimately die—is poorly understood, yet it underlies major human diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease and ALS (amyotrophic lateral sclerosis, also known as Lou Gehrig's disease).
Advertisement

While the causes of neurodegeneration are still coming to light, there is mounting evidence that neurons are exquisitely sensitive—much more so than other types of cells—to disruptions in how proteins are made and how they fold.

tRNAs are critical in translating the genetic code into proteins, the workhorses of the cell. tRNAs possess a characteristic cloverleaf shape with two distinct "business" ends—one that reads out the genetic code in three-letter increments (or triplets), and another that transports the protein building block specified by each triplet (known as an amino acid).

In higher organisms, tRNAs are strikingly diverse. For example, while there are 61 distinct triplets that are recognized by tRNAs in humans, the human genome contains roughly 500 tRNA genes. To date little is known about why they are so numerous, whether they carry out overlapping or redundant functions, or whether they possibly have roles beyond the making of proteins.

"Multiple genes encode almost all tRNA types," Ackerman says. "In fact, AGA codons are decoded by five tRNAs in mice. Until now, this apparent redundancy has caused us to completely overlook the disease-causing potential of mutations in tRNAs, as well as other repetitive genes."

Ackerman and her colleagues at The Jackson Laboratory in Bar Harbor, Maine, and Farmington, Conn., The Scripps Research Institute in LaJolla, Calif., and Kumamoto University in Japan pinpointed a mutation in the tRNA gene n-Tr20 as a genetic culprit behind the neurodegeneration observed in mice lacking GTPBP2.

Remarkably, the tRNA's activity is confined to the brain and other parts of the central nervous system, in both mice and humans. The tRNA encoded by n-Tr20 recognizes the triplet code, AGA (which specifies the amino acid arginine).

The n-Tr20 defect disrupts how proteins are made. Specifically, it causes the "factories" responsible for synthesizing proteins, called ribosomes, to stall when they encounter an AGA triplet.

Such stalling can be largely overcome, thanks to the work of a partner protein called GTPBP2. But when this partner is missing—as it is in the mutant mice that Ackerman and her colleagues studied—the stalling intensifies. This is thought to be a driving force behind the neurodegeneration seen in these mice.

Source: Eurekalert
Advertisement

Advertisement
Advertisement

Latest Research News

What Are the Effects of Smoking on Quality of Life?
Tobacco smoke contains toxic chemicals which damage lungs, weaken the immune system and cause tuberculosis.
 Brain Shape Controls Our Thoughts, Feelings, and Behaviour
Identifying an unappreciated relationship between brain shape and activity overturns the century-old paradigm emphasizing the importance of complex brain connectivity.
Eight Threats to Black Adult's Longevity
Decoding the eight factors affecting Black adults' life expectancy.
Beyond the Campus: Contrasting Realities Revealed!
Sobering truth about foot travel in the United States emerges from international statistics, highlighting the prevalence of walking on the Blacksburg campus.
Astounding Link Between Darwin's Theory and Synaptic Plasticity — Discovered!
Unveiling a hidden mechanism, proteins within brain cells exhibit newfound abilities at synapses, reinforcing Darwin's theory of adaptation and diversity in the natural world.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
×

Researchers Find New Mechanism Behind Neurodegeneration in Mice Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests