Pulsed Ultrasound Techniques to Stimulate Brain Circuit Activity

by Tanya Thomas on  November 1, 2008 at 11:18 AM Research News
RSS Email Print This Page Comment bookmark
Font : A-A+

 Pulsed Ultrasound Techniques to Stimulate Brain Circuit Activity
A new "pulsed ultrasound technique" that can remotely stimulate brain circuit activity has been developed by neuroscientists at Arizona State University. This new technique works without any requirement for exogenous proteins or even medical devices that are surgically implanted for a similar purpose.

The new study provides insights into how low-power ultrasound can be harnessed for the noninvasive neurostimulation of brain circuits and offers the potential for new treatments of brain disorders and diseases, like traumatic stress disorders, traumatic brain injury and even Alzheimer's disease.

Show Full Article

"We were able to unravel how ultrasound can stimulate the electrical activity of neurons by optically monitoring the activity of neuronal circuits, while we simultaneously propagated low-intensity, low-frequency ultrasound through brain tissues," said lead investigator William "Jamie" Tyler.

The researchers discovered that remotely delivered low intensity, low frequency ultrasound (LILFU) increased the activity of voltage-gated sodium and calcium channels in a way sufficient to trigger action potentials and the release of neurotransmitter from synapses.

As the processes are important for transferring information among neurons, the researchers suggested that this type of ultrasound provides a powerful new tool for modulating the activity of neural circuits.

"Many of the stimulation methods used by neuroscientists require the use and implantation of stimulating electrodes, requiring direct contact with nervous tissue or the introduction of exogenous proteins, such as those used for the light-activation of neurons," explained Tyler.

In their search for new types of noninvasive neurostimulation methods, the scientists revisited ultrasound.

"We were quite surprised to find that ultrasound at power levels lower than those typically used in routine diagnostic medical imaging procedures could produce an increase in the activity of neurons while higher power levels produced very little effect on their activity," said Tyler.

The skull has been a stumbling block to using ultrasound noninvasively in the brain. However, they found that low-frequency ultrasound could be focused through human skulls.

Talking about the potential of using his groups' methods to remotely control brain activity, Tyler said: "One might be able to envision potential applications ranging from medical interventions to use in video gaming or the creation of artificial memories along the lines of Arnold Schwarzenegger's character in 'Total Recall.' Imagine taking a vacation without actually going anywhere?

"Obviously, we need to conduct further research and development, but one of the most exhilarating prospects is that low intensity, low frequency ultrasound permits deep-brain stimulation procedures without requiring exogenous proteins or surgically implanted medical devices."

The study is published in the latest issue of the journal Public Library of Science (PLoS) One.

Source: ANI

Post a Comment

Comments should be on the topic and should not be abusive. The editorial team reserves the right to review and moderate the comments posted on the site.
Notify me when reply is posted
I agree to the terms and conditions
Alice J. Smith

A member of my family suffers from Post-Traumatic Stress Disorder and has been on vaious medications during the past 8 years without satisfactory recovery. How can we learn more about the Pulsed Ultrasound Techniques, and how can we make contact with William "Jamie" Tyler?

Recommended Reading

News A - Z


News Search

Premium Membership Benefits

Medindia Newsletters

Subscribe to our Free Newsletters!

Terms & Conditions and Privacy Policy.

Stay Connected

  • Available on the Android Market
  • Available on the App Store

News Category

News Archive