Symptoms of the neurodevelopmental disorder Rett syndrome arise, causing a gradual loss of brain function during early development, when one protein goes missing or is mutated.
Symptoms of the neurodevelopmental disorder Rett syndrome arise, causing a gradual loss of brain function during early development, when one protein goes missing or is mutated. This fact led Duke University Medical Center researchers to test a theory that the protein might also contribute to nerve-cell connection (synapse) changes in a fully formed adult mouse brain when exposed to psychostimulant use.
In two experiments with mice, Anne West, M.D., Ph.D., an assistant professor of neurobiology, and Duke colleagues found that virally manipulating levels of the methyl-binding protein MeCP2 in the brains of adult mice affected their place preference, a measure of the rewarding properties of the amphetamines the mice consumed in that location. The mice that had less of the MeCP2 protein kept returning to the same location in hope of getting more of the drug.
The study was published Aug. 15 in Nature Neuroscience.
Scientists have speculated that psychostimulant drugs make long-lasting changes to synapses that lead to addictive types of behavior. When the researchers changed the expression levels of MeCP2, they noticed a proportional relationship.
"The body may increase MeCP2 as a way to reset the reward threshold," West said. "You decrease the sense of reward when you increase MeCP2. It might be the body's compensation and way to maintain balance."
These studies show that MeCP2 is involved in the process through which repeated amphetamine use changes both the structure and the function of the brain, West said.
Advertisement
The study suggests that the methyl-DNA binding protein MeCP2 is important in regulating the rewarding properties of psychostimulant drugs, which may lead to treatments for people who overuse stimulants, West said.
Advertisement
She said the next step is to learn what is happening on a molecular level to cause these effects.
Source-Eurekalert