About My Health Careers Internship MedBlogs Contact us
Medindia LOGIN REGISTER
Advertisement

Obtaining Critical Data from Patients During Epilepsy Surgery More Efficient With Stereo EEG

by Kathy Jones on March 15, 2013 at 8:08 PM
Font : A-A+

 Obtaining Critical Data from Patients During Epilepsy Surgery More Efficient With Stereo EEG

A new study published in the journal Neurosurgery reveals that critical data for surgical planning can be obtained more efficiently from patients with drug resistant epilepsy with the help of an updated stereoelectroencephalography (SEEG) technique.

The journal is published by Lippincott Williams & Wilkins, a part of Wolters Kluwer Health.

Advertisement

"SEEG is a safe and accurate procedure for invasive assessment of the epileptogenic zone," according to the new report by Dr. Francesco Cardinale of Niguarda Ca' Granda Hospital, Milan, and colleagues. Their "updated workflow" combines sophisticated imaging data reconstructions and robot-assisted surgery, "providing essential information in the most complex cases of drug-resistant epilepsy."

Stereo EEG Technique Updated and Simplified The researchers describe the development of and initial experience with an updated SEEG technique for planning epilepsy surgery. The concept of SEEG is not new. Originally developed by French researchers named Talairach and Bancaud, SEEG uses electrodes implanted in the brain to localize the epileptogenic zone—the area in which seizures originate. The traditional SEEG technique includes two surgical steps: 3-D imaging of the brain blood vessels (stereotactic angiography) followed by electrode implantation.
Advertisement

Over the last few years, Dr. Cardinale and colleagues have been working to develop an updated SEEG workflow allowing a one-step surgical technique. Before surgery, the patient undergoes 3-D magnetic resonance imaging and 3-D digital subtraction angiography. The digital imaging data then undergo processing for reconstruction, resulting in the creation of a detailed computerized model of the brain and of the vascular tree. A key part of the development process was creating a "homemade" computer script to automate the necessary series of data processing steps.

Using the software program from an image-guided neurosurgical robot, the reconstructed data are used to plan the surgical approach, or "trajectory." Robot-assisted surgery was then performed to implant the electrodes. Whether performed by the traditional or updated workflow, the goal of SEEG is to provide the surgeon with highly precise information on the location of the epileptogenic zone, used for planning epilepsy surgery.

The researchers report on the outcomes of 500 SEEG procedures performed between 1996 and 2011 in patients with drug-resistant epilepsy. Both techniques were highly successful in guiding electrode placement to localize the epileptogenic zone. Complications occurred in 12 cases, for a rate of 2.4 percent.

The first 419 procedures were done with the traditional two-step process; the next 81 procedures were done using the new workflow. The updated technique provided good data reconstructions with no loss of information and a "dramatic reduction in procedural error risks." Use of the 3-D data with the neurosurgical robot allowed neurosurgeons to target any area of the brain, from a wide range of angles. They were also able to create 3-D representations of the brain anatomy and electrode placement, which facilitated communication among the surgical team members and patients.

Detailed analysis in a subset of cases found improved accuracy with the new technique. Median error in localizing the implanted electrodes decreased by about 1 millimeter both at the entry point (the most risky zone) and at the deepest point. The authors believe their technique allows them to estimate a "safe entry region" for electrode placement with 99 percent accuracy.

The new experience adds to the evidence that SEEG is a safe and effective procedure for electrode placement and surgical planning in patients with drug-resistant epilepsy. Dr. Cardinale and colleagues conclude, "The traditional Talairach methodology, recently updated by the use of the most advanced multimodal planning tools and robot-assisted surgery, allows one to directly record electric activity from every brain structure, providing valuable information in the most complex cases of refractory epilepsy." They are currently working on developing a "SEEG automatic planner."



Source: Eurekalert
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Advertisement
News Category
What's New on Medindia
Coffee May Help You Fight Endometrial Cancer
Fermented Skin Care
Television Binge-Watching May Boost the Risk of Deadly Blood Clots
View all

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Epilepsy Febrile Fits / Febrile Convulsions Reye’s Syndrome Convulsions Electroencephalogram Aicardi-Goutieres Syndrome Cavernous Malformation Dravet Syndrome Absence Seizure Juvenile Myoclonic Epilepsy 

Recommended Reading
Epilepsy
Fits or convulsions or Epilepsy is characterized by recurrent, involuntary seizures and is ......
Convulsions
Seizure or a convulsion is a result of abnormal electrical activity in the brain. If there are two ....
Neurocysticercosis
Neurocysticercosis or Cysticercosis of brain is the most common cause of epilepsy and the most ......
Absence Seizure
Absence seizure (petit mal epilepsy) involves sudden lapse in consciousness and staring blankly into...
Aicardi-Goutieres Syndrome
Aicardi-Goutieres Syndrome is observed in infants and older children. To date, defects in 6 genes ar...
Cavernous Malformation
Cavernous malformations are malformations in blood vessels that can cause neurological disorders whe...
Dravet Syndrome
The result of a rare genetic mutation, Dravet syndrome is an unusual case of epilepsy in children....
Electroencephalogram
An electroencephalogram (EEG) detects electrical activity in the brain using electrodes attached to ...
Febrile Fits / Febrile Convulsions
High fever in kids can cause convulsions and are called febrile fits that do not include the seizure...
Juvenile Myoclonic Epilepsy
Juvenile myoclonic epilepsy is a form of generalized seizure characterized by sudden jerky movements...
Reye’s Syndrome
Reye's syndrome is a medical emergency chiefly affecting children and teenagers and is marked by the...

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2022

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use
open close
CONSULT A DOCTOR
I have read and I do accept terms of use - Telemedicine

Advantage Medindia: FREE subscription for 'Personalised Health & Wellness website with consultation' (Value Rs.300/-)