Novel Weapon targets Antibiotic Resistant Bacteria

by Ramya Rachamanti on April 15, 2019 at 8:59 PM

Novel Weapon targets Antibiotic Resistant Bacteria
Antibiotic resistance could be addressed through a new tool developed by the scientists from the Institut Pasteur, the CNRS and the Universidad Politécnica de Madrid by programming a bacterial genetic structure to kill multiple antibiotic-resistant bacteria without killing bacteria which are beneficial to the body. This new strategy is associated with a minimal rate of emergence of new resistance. These findings were published in the journal Nature Biotechnology.

When the first antibiotics were discovered in the early 20th century, the rate of death from infectious diseases fell dramatically. But the emergence of multidrug-resistant bacteria as a result of antibiotic misuse is raising fears that by 2050, these same diseases will once again become the leading cause of death worldwide.

The discovery of antibiotics in the 1930s paved the way for unprecedented medical and societal progress. But the past 20 years have seen the emergence of bacterial resistance mechanisms which are spreading across the planet.

Few new antibiotics are being developed, and the time it takes from the introduction of a treatment to the subsequent acquisition of resistance is becoming shorter. Resistance jeopardizes our ability to treat infectious diseases, giving rise to disability and death.

When an antibiotic treatment is used, the therapeutic molecules attack all the bacteria in the microbiota. This non-targeted destruction leads to dysbiosis, in other words a disruption in the balance of the bacterial ecosystem that can result in the emergence of opportunistic bacteria or resistance to the antibiotic used.

The harmful impact of dysbiosis can be prevented by developing highly specific antimicrobial strategies. For example, the CRISPR-Cas9 tool can be used to target the resistance genes in pathogenic bacteria, but the rate of escape associated with the technique (when the pathogen manages to escape the various defense mechanisms employed by the infected organism) is relatively high.

In this study, a scientific team directed by Didier Mazel, Professor at the Institut Pasteur, developed an alternative strategy based on the specific expression of extremely powerful toxins delivered by conjugation. Conjugation is a process used by bacteria to exchange genes via plasmids, DNA molecules that are specific of bacterial genomes.

In this novel strategy, the gene encoding the toxin is inside the plasmid. "The use of toxins from the type II toxin-antitoxin system seemed like a good idea because it appears that bacteria do not develop resistance to this arsenal.

But one of the challenges of this method is how to control the sheer power of these toxins. We did this by separating their genes into two fragments, to make sure that they would only be effective if the two parts could be recombined," explains Didier Mazel, lead author of the paper.

The scientists verified the specific nature of this toxin in Vibrio cholerae, a marine bacterium whose natural hosts are certain fish and shellfish. "We firstly wanted to activate toxin expression in Vibrio cholerae, using a promoter (a DNA region required for transcription) specifically recognized by this bacterium which expresses and activates the toxin complex," continues Didier Mazel.

They then refined this "weapon" further so that the toxin would only be able to target antibiotic-resistant strains of Vibrio cholerae. This involved creating a genetic module expressing a highly specific toxin inhibitor, an antitoxin, which is no longer produced when the bacterium contains resistance genes.

By combining these two procedures, they developed a genetic structure whose efficacy was verified in vivo in the complex natural communities of bacteria in the zebrafish and Artemia microbiotas.

"The level of escape for this alternative strategy is very low. It can be easily adapted for the specific destruction of several other pathogens. We now need to improve the process of gene delivery by the plasmid," concludes Didier Mazel.

A patent application has been filed by the Institut Pasteur and the French National Center for Scientific Research (CNRS) for the genetic tool designed by Didier Mazel and his team and for its applications. This European patent application (EP18306780) was filed on December 20, 2018 under the name Intein mediated protein splicing system for controlled expression of proteins - Use in the expression of toxins in target cells.

Source: Eurekalert

News A-Z
News Category
What's New on Medindia
'Hybrid Immunity' may Help Elude COVID-19 Pandemic
Stroop Effect
Plant-Based Diet may Reduce the Risk of COVID-19
View all

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Shigellosis MRSA - The Super Bug Drug Resistance - Antibiotic Resistance Food Safety for Health Antibiotics Eye Infections Natural Antibiotics to Fight Bacterial Infections Vancomycin-Resistant Enterococci (VRE) Boils - Treatment by Drugs Multiple Drug Allergy Syndrome 

Recommended Reading
Drug Resistance - Antibiotic Resistance
Drug resistance is often a problem in malaria, tuberculosis, HIV, sexually transmitted diseases and ...
Antibiotics are among the most used and abused medications. This article explains some general featu...
Boils - Treatment by Drugs
Diabetes patients have reduced immunity, which makes them more susceptible to skin infections like b...
Eye Infections
Eye infection is a common problem that often causes pain and discomfort to the eyes. Common symptoms...
MRSA - The Super Bug
MRSA infection is the most dreaded hospital or community acquired infection that can become ......
Multiple Drug Allergy Syndrome
Multiple drug allergy syndrome or multiple drug hypersensitivity syndrome is a condition that causes...
Natural Antibiotics to Fight Bacterial Infections
Fighting infections the natural way and preventing them is always more effective than consuming medi...
Shigellosis or Bacillary Dysentery is a common cause of gastro-enteritis worldwide and can cause blo...
Vancomycin-Resistant Enterococci (VRE)
Enterococci are a group of gram-negative bacteria that mostly inhabit the human gut. At present ther...

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2021

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use