About My Health Careers Internship MedBlogs Contact us

Novel Approach That may Help Eradicate Malaria

by Anjali Aryamvally on February 24, 2018 at 1:55 PM
Font : A-A+

Novel Approach That may Help Eradicate Malaria

A dormant form of the malaria parasite that lurks in the livers of patients is one of the biggest obstacles to eradicating malaria. Now, in a new study, MIT researchers have grown a dormant parasite in engineered human liver tissue. This allows scientists to closely study how the parasite becomes dormant, what vulnerabilities it may have, and how it springs back to life.

Malaria researchers know little about the biology of these dormant parasites, so it has been difficult to develop drugs that target them. The new advance that could help scientist discover new drugs, MIT researchers have shown they can grow the dormant parasite in engineered human liver tissue for several weeks, allowing them to closely study how the parasite becomes dormant, what vulnerabilities it may have, and how it springs back to life.


After verifying that they had successfully cultivated the dormant form of the parasite, the researchers showed that they could also sequence its RNA and test its response to known and novel antimalarial drugs -- both important steps toward finding ways to eradicate the disease.

"After 10 years of hard work, we were able to grow the organism, show it had all the functional hallmarks, perform a drug screen against it, and report the first transcriptome of this elusive form. I'm really excited because I believe it will open the door to both the basic biology of dormancy as well as the possibility of better medicines," says Sangeeta Bhatia, the John and Dorothy Wilson Professor of Health Sciences and Technology and Electrical Engineering and Computer Science. Bhatia is also a member of MIT's Koch Institute for Integrative Cancer Research and Institute for Medical Engineering and Science, and the senior author of the study.

MIT graduate student Nil Gural is the first author of the paper published in the journal Cell Host and Microbe.

Persistent infections

Most human cases of malaria are caused by one of two parasite species, Plasmodium falciparum and Plasmodium vivax. Plasmodium vivax, while less deadly, produces dormant forms known as hypnozoites (so called because they are "hypnotized"), and can lead to recurring infections.

In 1991, Aneityum, a small island in the Southwest Pacific, was chosen as a site to test possible measures to eradicate malaria. Researchers sprayed against mosquito larvae and supplied bed nets and malaria medicine across the entire island. These efforts led to the complete eradication of Plasmodium falciparum within a year. In contrast, it took five years to eliminate Plasmodium vivax.

"This dormant form has been seen as the critical barrier to eradication," Bhatia says. "You can treat the symptoms of vivax malaria by killing all the parasites in the blood, but if hypnozoites linger in someone's liver, these forms can reactivate and reinfect the blood of a patient. If a mosquito comes along and takes a blood meal, the cycle starts all over again. So, if we want to eradicate malaria, we have to eradicate the hypnozoite."

The only existing drug that can kill hypnozoites is primaquine, but this drug cannot be used in large-scale eradication campaigns because it causes blood cells to rupture in people with a certain enzyme deficiency.

Bhatia's team became aware of this problem in 2008, when the World Health Organization and the Bill and Melinda Gates Foundation called for a renewed effort to eradicate malaria, which infects more than 200 million people every year and killed an estimated 429,000 in 2015. Her lab is working with special micropatterned surfaces on which human liver cells can be grown, surrounded by supportive cells. This architecture creates a microenvironment in which human liver cells function much the same way as they do in humans, making it easier to establish, maintain, and study infections of the liver.

Bhatia, who initially used this technology to model hepatitis infections, realized it was also well-suited to studying the liver stage of malaria. She and her malaria team lead, Sandra March, began with Plasmodium falciparum, the strain that can be cultured in lab settings, and found that parasites grown in these liver tissue followed the same life cycle observed in natural infections. They also found that the system could be used to test responses to experimental malaria vaccines.

Following that success, Bhatia's lab began working with Plasmodium vivax. Efforts to bring the parasite-infected mosquitoes into the United States were unsuccessful, so Gural, the paper's lead author, traveled to collaborator Jetsumon Prachumsri's lab in Thailand repeatedly to obtain samples from infected patients and perform the experiments there.

Using their new technology, the researchers showed that they could grow small forms of the parasite that had all of the known features of hypnozoites: persistence, sensitivity to primaquine, and the ability to "wake up" after a few weeks.

New drug targets

Once the researchers were confident that these forms were actually hypnozoites, they set out to do some further studies. First, they obtained six candidate antimalarials now in development and tested them for activity against their Plasmodium vivax samples. They found that none of them could kill established hypnozoites, which was what they had expected based on clinical trials. They now plan to test a larger set of new compounds, working with the nonprofit group Medicines for Malaria Venture, which has a collection of thousands of drug candidates.

Working with scientists at the Swanson Biotechnology Center at the Koch Institute and the Broad Institute of Harvard and MIT, the MIT team performed the first sequencing of the hypnozoite transcriptome. No one had been able to look this closely at hypnozoites before, and RNA sequencing revealed that the dormant forms were not transcriptionally silent, as had been expected, but instead express a different subset of genes than those found in their active counterparts.

In future studies, Bhatia, in collaboration with other MIT labs, plans to use single cell RNA-sequencing to identify gene signatures to uncover the signaling pathways that control hypnozoite dormancy and reactivation. The researchers will also study corresponding changes in gene expression of the infected liver cells. This approach could yield potential new drug candidates that would specifically target the dormant forms of the parasite, bringing the field closer to its goal of eradicating malaria. The researchers also hope to identify biomarkers that could be used to diagnose patients who have an otherwise undetectable dormant infection.

Source: Eurekalert

News A-Z
News Category
What's New on Medindia
Cervical Cancer Awareness Month 2022
Ultra-Low-Fat Diet
Goji Berries May Protect Against Age-Related Vision Loss
View all

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Malaria-water Malaria Mosquito Diseases Fever Malaria - Protection Strategies 

Recommended Reading
New Insights On How Malarial Parasites Break Through Red Blood Cell
New insights on how malaria parasites usually breakthrough red blood cells and infect fresh ......
Single Dose Primaquine Helps Reduce Malaria Transmission
Mini-primaquine does help stop people with malaria infecting mosquitoes, finds new review....
New, Experimental Malaria Vaccine Shows Promise
A new, experimental vaccine for malaria has shown fast and effective results against acute ......
How Malaria Parasite Packs Genetic Material For Mosquito-Human Host Use
Role of key protein to facilitate RNA-based interactions between malarial parasite, its mosquito ......
Fever or Pyrexia is an elevation in normal body temperature. Causes of fever include infections, inj...
Malaria is caused by a parasite that enters blood through the bite of an infected mosquito. It is ch...
Malaria - Protection Strategies
Malaria is a dangerous disease with lethal consequences that requires protective measures for preven...
Mosquito Diseases
Mosquito-borne diseases, like malaria, filaria, dengue, etc are common in places conducive of mosqu...

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2022

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use
open close
I have read and I do accept terms of use - Telemedicine

Advantage Medindia: FREE subscription for 'Personalised Health & Wellness website with consultation' (Value Rs.300/-)