About Careers Internship MedBlog Contact us

Importance of Precise Timing in Developing Embryos

by Anjali Aryamvally on February 24, 2018 at 1:58 PM
Importance of Precise Timing in Developing Embryos

Synchronization between signaling waves controlled by the Wnt and Notch pathways is essential for embryo development and patterning, according to a research team at EMBL.

During an embryo's journey from a single cell to a complex organism, countless patterning processes make sure that the right cells develop in exactly the right location and at the right time. Cells activate specific genes in a rhythmic manner during this early development, resulting in waves of activation sweeping through the embryo.


The study published in Cell suggests that the rhythm between the two specific sets of waves, controlled by the Wnt and Notch pathways, enables the formation of new segments.

The formation of new segments in a mouse embryo is controlled by a molecular clock. Two key signalling pathways in this process are called Wnt and Notch. Both show periodic pulses of activity, which occur at the same pace as segments form. Now, scientists from the Aulehla and Merten labs at EMBL show that the timing between the two waves is responsible for segmentation. At a specific time point, the Wnt and Notch waves get in sync and overlap, coinciding with the formation of a new segment.

To test what happened when the two waves were not in sync, the research team developed a new experimental strategy to control the rhythm of Wnt and Notch pulses. Katharina Sonnen, an EMBL postdoctoral researcher working in both the Aulehla and Merten labs, developed a system that enabled her to synchronise the waves to an external rhythm. Strikingly, a new segment was only made when the Wnt and Notch waves synchronised. Changing their relative timing prevented segment formation.

Vital information in dynamic signals

"It's the first time that we've been able to directly test the importance of timing in developing systems," says EMBL group leader Alexander Aulehla, who led the work. "This shows that vital information for the development of an embryo is encoded in dynamic, oscillating signals. In the future, this approach could be used to test the importance of rhythm in other contexts - for example in stem cells and disease states, where the same signaling pathways are in place."

Source: Eurekalert
Font : A-A+



Latest Research News

Insight into Cellular Stress: Mechanisms Behind mRNA Sequestration Revealed
The discovery deepens our understanding of m6A biology and stress granule formation, with implications for neurodegenerative diseases.
Disrupted Circadian Rhythm Elevates the Risk of Parkinson's Disease
Trouble with sleep and the body's clock may increase your risk for Parkinson's, as per a new study.
A Wake-Up Call for Women  Hot Flashes Could Point to Alzheimer's Risk
New study uncovers a link between nocturnal hot flashes and Alzheimer's risk in menopausal women, suggesting a potential biomarker.
Breakthrough Brain-Centered Approach Reduces Chronic Back Pain
Our discovery revealed that a minority of individuals attributed their chronic pain to their brain's involvement.
New Statement to Protect Athletes' Health Published
Relative Energy Deficiency in Sport syndrome is overlooked by athletes and can be worsened by 'sports culture' due to its perceived short-term performance benefits.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
Greetings! How can I assist you?MediBot

Importance of Precise Timing in Developing Embryos Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests