About Careers Internship MedBlogs Contact us
Medindia LOGIN REGISTER
Advertisement

New Discovery Could Help Paralysis Sufferers Regain Speech

by VR Sreeraman on August 24, 2012 at 7:25 PM
Font : A-A+

 New Discovery Could Help Paralysis Sufferers Regain Speech

Scientists have unraveled how our brain cells allow humans to pronounce vowels, a discovery which could help paralysis sufferers learn to talk again.

Published in the Aug. 21 edition of the journal Nature Communications, the discovery could lead to new technology that verbalizes the unspoken words of people paralyzed by injury or disease.

Advertisement

"We know that brain cells fire in a predictable way before we move our bodies," said Dr. Itzhak Fried, a professor of neurosurgery at the David Geffen School of Medicine at UCLA. "We hypothesized that neurons would also react differently when we pronounce specific sounds. If so, we may one day be able to decode these unique patterns of activity in the brain and translate them into speech."

Fried and the Technion's Ariel Tankus, formerly a postdoctoral researcher in Fried's lab at UCLA, followed 11 UCLA epilepsy patients who had electrodes implanted in their brains to pinpoint the origin of their seizures. The researchers recorded neuron activity as the patients uttered one of five vowels, or syllables containing the vowels.
Advertisement

With the Technion's Shy Shoham, the team studied how the neurons encoded vowel articulation at both the single-cell and collective level. The scientists found two areas — the superior temporal gyrus and a region in the medial frontal lobe — that housed neurons related to speech and attuned to vowels. The encoding in these sites, however, unfolded very differently.

Neurons in the superior temporal gyrus responded to all vowels, although at different rates of firing. In contrast, neurons that fired exclusively for only one or two vowels were located in the medial frontal region.

"Single-neuron activity in the medial frontal lobe corresponded to the encoding of specific vowels," Fried said. "The neuron would fire only when a particular vowel was spoken, but not other vowels."

At the collective level, neurons' encoding of vowels in the superior temporal gyrus reflected the anatomy that made speech possible — specifically, the tongue's position inside the mouth.

"Once we understand the neuronal code underlying speech, we can work backwards from brain-cell activity to decipher speech," said Fried. "This suggests an exciting possibility for people who are physically unable to speak. In the future, we may be able to construct neuro-prosthetic devices or brain-machine interfaces that decode a person's neuronal firing patterns and enable the person to communicate."

Source: Eurekalert
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
What's New on Medindia
COVID Toes
International Yoga Day 2022 - 'Yoga for Humanity'
Wearable Devices Are Now Transforming Depression, Multiple Sclerosis, and Epilepsy Management.
View all
Recommended Reading
News Archive
Date
Category
Advertisement
News Category

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Bellīs Palsy Hemiplegia Paralysis Spinal Tumors Monoplegia 

Most Popular on Medindia

Blood Donation - Recipients Sanatogen Sinopril (2mg) (Lacidipine) Loram (2 mg) (Lorazepam) Diaphragmatic Hernia How to Reduce School Bag Weight - Simple Tips Find a Doctor Accident and Trauma Care Drug Side Effects Calculator The Essence of Yoga

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2022

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use