Medindia LOGIN REGISTER
Medindia
Advertisement

New Approach to Slow Alzheimer’s Disease Progression Identified

by Colleen Fleiss on May 4, 2018 at 2:00 AM
New Approach to Slow Alzheimer’s Disease Progression Identified

New promising drug strategy that blocks tau transmission has been identified by researchers at the UCLA School of Nursing and the department of neurology at the David Geffen School of Medicine at UCLA. The new discovery could lead to design of drugs that slow neurodegeneration. The study was published online in the journal Biochemical and Biophysical Research Communications.

Alzheimer's disease destroys brain cells in part by promoting the formation of insoluble clumps that contain a protein called tau. Not only are these "tau aggregates" toxic for the cells that harbor them, but they also invade and destroy neighboring brain cells, or neurons, which speeds the cognitive decline associated with the Alzheimer's. "Over 200 molecules have been tested as disease-modifying Alzheimer's therapy in clinical trials, and none has yet attained the holy grail," said Varghese John, a UCLA associate professor of neurology and the study's senior author. "Our paper describes a novel approach to slow Alzheimer's progression by showing it is possible to inhibit propagation of pathologic forms of tau."

Advertisement


John is a member of the UCLA Easton Center for Alzheimer's Disease Research and leads the Drug Discovery and Translational lab. In healthy people, tau proteins are benign building blocks of a neuron's framework, or cytoskeleton. But in Alzheimer's disease, tau proteins fall away from the cytoskeleton, become abnormally modified, and then form insoluble "neurofibrillary tangles" that destroy cells. To make matters worse, dying cells encase tau aggregates in lipid vesicles called exosomes, which then bud off and "seed" neighboring tissues, keeping the destructive cycle going.

The researchers conducted several experiments that suggest that cambinol can subvert the "transfer" step by blocking an enzyme called nSMase2, which is essential for catalyzing production of the exosome carriers. In one, the scientists used "donor cells" that harbored tau aggregates derived from postmortem human Alzheimer's specimens and mixed them with tau-free recipient cells. Without cambinol, the aggregates spread from donors to recipients, mirroring what happens in the brains of people with Alzheimer's. But when treated with cambinol, recipient cells remained tau-free when grown side by side with tau-positive donors, presumably because the drug disabled nSMase2 activity blocking release of the tau-carrying exosomes.
Advertisement

The researchers also observed decreased nSMase2 catalytic activity in the brains of mice that were given cambinol orally. John said the seemingly routine experiment was an essential first step. "Getting molecules into the brain is a big hurdle, because most drugs don't penetrate the blood-brain barrier," he said, referring to the membranes that surround the central nervous system and keep drugs out of it. "Now we know we can treat animals with cambinol to determine its effect on Alzheimer's pathology and progression." The paper is the first to report on a model of how cambinol switches off nSMase2 catalytic activity at the atomic level, and it provides critical knowledge for medicinal chemists like John to begin designing new drugs based on cambinol that are more potent and efficacious than the molecule itself. That work is already being done in collaboration with Neil Garg, a UCLA professor of chemistry and biochemistry. If the approach is successful in animals, it could be tested in clinical trials.

"Understanding pathways is the first step to new drug targets," said Karen Gylys, a UCLA professor of nursing and a co-author of the study. "With cambinol in hand, we have a useful tool for understanding cellular pathways that enable the spread of tau pathology."

Source: Eurekalert
Font : A-A+

Advertisement

Advertisement
Advertisement

Recommended Readings

Latest Research News

New Immunotherapy for Psoriasis & Vitiligo
Scientists identified mechanisms governing immune cells, selectively removing troublemakers to reshape skin immunity. Benefits those with psoriasis, vitiligo.
2050 Forecast: 1.06 Billion Individuals to Face 'Other' Musculoskeletal Disorders
By 2050, an anticipated increase from 494 million cases in 2020 to 1.06 billion people with musculoskeletal disabilities is expected.
Gene Therapies Can Disrupt Gaucher Disease Drug Market
Experts consulted by GlobalData anticipate a significant overhaul in the Gaucher disease scenario because of forthcoming gene therapies in development.
NASH Cases Expected to Hit 26.55 Million in 7MM by 2032
Within the seven major markets, 12% to 20% of diagnosed prevalent NASH cases present severe liver damage (stage 4 liver fibrosis), denoting cirrhosis.
Can Sleep Brain Waves Defend Against Epileptic Activity?
Memory deficits in individuals with epilepsy, especially cognitive difficulties, might partially stem from the transient impairments caused by these slow waves.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
×

New Approach to Slow Alzheimer’s Disease Progression Identified Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests