About Careers Internship MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

Insecticidal Toxins from Bacteria Kill Host Insects

by Medindia Content Team on September 11, 2007 at 4:22 PM
Insecticidal Toxins from Bacteria Kill Host Insects

A nematode worm and a light-emitting strain of bacteria work together to prey on soil-dwelling insects and kill their insect hosts. Scientists speaking at the Society for General Microbiology's 161st Meeting at the University of Edinburgh, UK, that runs from 3-6 September 2007 are now investigating the potential role of these toxins in bacteria pathogenic to humans.

Speaker Michelle Hares, of the University of Exeter, studies insect-killing nematode worms which have symbiotic bacteria living in their guts. When the worm encounters insect prey, it burrows into the insect's body and regurgitates the bacteria. These bacteria, called Photorhabdus luminescens, then release toxins directly into the insect's bloodstream, rapidly killing it. The insect's flesh then provides food for the bacteria and in turn the bacteria are food for the nematode.

Advertisement

"Once inside an insect, caterpillar or larva, the bacteria release a mixture of toxins which kill the victim", says Michelle Hares of the University of Exeter's Cornwall Campus. "The toxins we identified are made up of three different proteins, and all three are needed to kill the insect".

The Cornwall based scientists also discovered that the same genes needed to make these protein toxins are found in the Yersinia pestis bacteria which caused the bubonic plague, and in Yersinia pseudotuberculosis which causes thousands of cases of gastroenteritis today.
Advertisement

When the toxic proteins from both these human pathogenic bacteria were fed to tobacco hornworm caterpillars they had no effect, but when the same proteins were put on living cells from humans both Yersinia bacteria strains killed the cells.

"Our initial interest in this group of toxins, was centered around the hunt for novel insecticides, but our work now suggests they may also play an important role in the evolution of human and mammalian disease", says Michelle Hares.

"Our findings suggest that insecticidal toxin complexes have been adapted by the Yersinia family of bacteria to attack mammalian cells. We are therefore currently investigating exactly how the toxin complexes elicit their response and how they are involved in the evolution of pathogenic disease in Yersinia".

Source: Eurekalert
LIN /J
Font : A-A+

Advertisement

Advertisement
Advertisement

Recommended Readings

Latest General Health News

US Woman Loses All Limbs in Fish-Related Bacterial Outbreak
In a tragic incident, a woman in the US experienced the loss of all her limbs as a result of a bacterial outbreak linked to the consumption of contaminated fish.
NIH Launches the First In-Human Universal Flu Vaccine Trial
FluMos-v2, a unique universal influenza vaccine candidate, undergoing a phase 1 trial at NIH, increases recipients' immunity against many influenza viruses.
Global Polio Eradication Initiative Assesses Vaccination Strategies in Pakistan
In Pakistan, the polio campaign focuses on more than 270,000 children under the age of five years, residing in areas with insufficient vaccine coverage.
Diagnostic Errors: The Rocky Road to Life-threatening Health Complications
Dangers of Wrong Diagnosis: Diagnostic errors in healthcare can increase the risk of permanent disabilities and deaths.
Strategies To Maintain Work-Life Balance In The Digital Age
Due to our constant connectivity and the ability to be accessible at all times, it has become challenging to separate from work and fully participate in personal life.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
MediBotMediBot
Greetings! How can I assist you?MediBot
×

Insecticidal Toxins from Bacteria Kill Host Insects Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests