About Careers MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

How the Body Regulates High Levels of CO2 in the Blood Revealed

by Dr. Enozia Vakil on June 12, 2014 at 7:26 PM
Font : A-A+

 How the Body Regulates High Levels of CO2 in the Blood Revealed

The importance of a specific group of neurons found in a region of the brain known as the retrotrapezoid nucleus in detecting changes in carbon dioxide levels has been revealed in a study.

Scientists from the Biomedical Sciences Institute of the University of São Paulo (USP) and the School of Dentistry at the São Paulo State University (Unesp) participated in the study.

Advertisement

"CO2 is important for regulating the acid-base balance of the blood. When the concentration of this gas becomes higher than normal, the blood tends to become more acidic, which promotes the activation of specialized sensors called chemoreceptors," said Eduardo Colombari, professor at the School of Dentistry at Unesp.

"Some of these chemoreceptors are located in the central nervous system; more precisely, on the ventrolateral surface of the medulla oblongata [the region of the brain responsible for neurovegetative control that forms the interface between the spinal cord and the mesencephalon] in the RTN," he explained.
Advertisement

According to Colombari, the neurons in this region express a specific marker that allows them to be identified. This marker consists of a transcription factor called Phox2b, which is involved in the cell differentiation of autonomic and respiratory neurons, that communicate with other neural groups responsible for controlling respiratory activity in order to keep CO2 levels within the physiological range.

Previous studies in the scientific literature, said Colombari, have suggested that various neuronal groups, such as the nucleus of the solitary tract, the raphe nuclei (which secrete serotonin), and the pontine and hypothalamic areas, were involved in the control of chemoreception (in this case, the detection and modulation of CO2 levels).

The group's work has demonstrated, however, that the respiratory changes caused by the increase in CO2 levels are compromised during the occurrence of selective destruction of the RTN neurons that express Phox2b.

The researcher further explained that the work illustrated how a small region of the brain contains neurons with a classic biochemical signature (Phox2b) which are involved in detecting and maintaining adequate levels of CO2, thus allowing the maintenance of homeostasis.

According to Colombari, advances in understanding the mechanisms involved in the perception of CO2 levels in the central nervous system could help prevent cases of sudden death in infants and adults in the future.



Source: Eurekalert
Advertisement

Advertisement
Advertisement

Recommended Reading

Latest Research News

What Are the Effects of Smoking on Quality of Life?
Tobacco smoke contains toxic chemicals which damage lungs, weaken the immune system and cause tuberculosis.
 Brain Shape Controls Our Thoughts, Feelings, and Behaviour
Identifying an unappreciated relationship between brain shape and activity overturns the century-old paradigm emphasizing the importance of complex brain connectivity.
Eight Threats to Black Adult's Longevity
Decoding the eight factors affecting Black adults' life expectancy.
Beyond the Campus: Contrasting Realities Revealed!
Sobering truth about foot travel in the United States emerges from international statistics, highlighting the prevalence of walking on the Blacksburg campus.
Astounding Link Between Darwin's Theory and Synaptic Plasticity — Discovered!
Unveiling a hidden mechanism, proteins within brain cells exhibit newfound abilities at synapses, reinforcing Darwin's theory of adaptation and diversity in the natural world.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
×

How the Body Regulates High Levels of CO2 in the Blood Revealed Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests