A newly identified mechanism reveals how influenza viruses are capable of hijacking the human cells, finds study.

TOP INSIGHT
A mechanism by which flu viruses hijack the human cells has been identified.
"This study shows how we can discover genes linked to disease -- in this case, neurodegeneration -- by looking at the natural symbiosis between a host and a pathogen," says the study’s senior investigator, Ivan Marazzi, PhD, an assistant professor in the Department of Microbiology at the Icahn School of Medicine at Mount Sinai.
Influenza A is responsible in part not only for seasonal flus but also pandemics such as H1N1 and other flus that cross from mammals (such as swine) or birds into humans.
"We are all a result of co-evolution with viruses, bacteria, and other microbes, but when this process is interrupted, which we call the broken symmetry hypothesis, disease can result," Dr. Marazzi says.
The genes affected in these rare cases of neurodegeneration caused by a congenital RNA exosome mutation may offer future insight into more common brain disorders, such as Alzheimer’s and Parkinson’s diseases, he added. In the case of Influenza A, the loss of RNA exosome activity severely compromises viral infectivity, but also manifests in human neurodegeneration suggesting that viruses target essential proteins implicated in rare disease in order to ensure continual adaptation.
The researchers found that once inside the nucleus, influenza A hijacks the RNA exosome, an essential protein complex that degrades RNA as a way to regulate gene expression. The flu pathogen needs extra RNA to start the replication process so it steals these molecules from the hijacked exosome, Dr. Marazzi says.
"Without an RNA exosome, a virus cannot grow, so the agreement between the virus and host is that it is ok for the virus to use some of the host RNA because the host has other ways to suppress the virus that is replicated," says the study’s lead author, Alex Rialdi, MPH, a graduate assistant in Dr. Marazzi’s laboratory.
Source-Eurekalert
MEDINDIA




Email










