About Careers Internship MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

How Enzymes are Able to Distinguish Important Cellular Messages Decoded

by Kathy Jones on August 4, 2014 at 10:03 PM
Font : A-A+

 How Enzymes are Able to Distinguish Important Cellular Messages Decoded

Researchers led by Leemor Joshua-Tor at Cold Spring Harbor Laboratory (CSHL) have shed new light on how a protein called Dis312 makes use of numerous recognition sites in order to identify messages that are flagged for decay.

Dis3l2 is a molecular machine that helps to preserve the character of stem cells. It serves as the executioner of an elegant pathway that prevents stem cells from changing into other cell types. The protein does this by acting like a garbage disposal for messages in the cell, cutting them up until they no longer encode useful information. But Dis3l2 is necessarily highly specific. While it must degrade messages that would alter the fate of the stem cell, discarding the wrong message could have devastating consequences.

Advertisement

Therefore, Dis3l2 only targets specific messages that have been marked with a molecular flag, known as a "poly-U" chain. The enzyme ignores the majority of messages in the cell - those that go on to encode proteins and other critical messages - whose ends are decorated with a different type of chain, called "poly-A" tail.

The CSHL scientists set out to understand how Dis3l2 is able to read and distinguish between these two chains. In work published today in Nature, they used a type of molecular photography, known as X-ray crystallography, to observe the structure of Dis3l2 while bound to a poly-U chain. "We saw that the enzyme looks a lot like funnel, quite wide at the top and narrow at the base," says Joshua-Tor. "The poly-U chain inserts itself into the depths of this funnel while the rest of the bulky message can remain in the wide mouth at the top."
Advertisement

But how does the enzyme "read" the poly-U chain? Christopher Faehnle, PhD and Jack Walleshauser, lead authors on the paper, found that the interior of the funnel contains more than a dozen contacts that interact specifically with the poly-U chain. "Together, all of these points create a sticky web that holds the poly-U sequence deep within the enzyme," says Faehnle. "But other chains don't interact - they can slide right out. It has helped us understand how an enzyme can differentiate between two sequences in the cell."

More than that, the work provides insight into how a stem cell maintains its identity. "Misregulation of any step in this pathway leads to developmental disorders and cancer," says Joshua-Tor. "We now have a much better appreciation of the terminal step, a critical point of control."



Source: Eurekalert
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
What's New on Medindia
Top 10 Foods for Decreasing DHT Production and Preventing Hair Fall
Alarming Cesarean Section Trends in India - Convenience or Compulsion of Corporate Healthcare
Quiz on Low-Calorie Diet for Diabetes
View all
News Archive
Date
Category
Advertisement
News Category

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

Most Popular on Medindia

Drug - Food Interactions Drug Side Effects Calculator Nutam (400mg) (Piracetam) Noscaphene (Noscapine) The Essence of Yoga A-Z Drug Brands in India Pregnancy Confirmation Calculator Blood - Sugar Chart Vent Forte (Theophylline) Find a Hospital
This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use
×

How Enzymes are Able to Distinguish Important Cellular Messages Decoded Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests