About Careers MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

How Cells in the Brain Communicate With Each Other

by Dr. Trupti Shirole on November 25, 2016 at 9:39 AM
Font : A-A+

 How Cells in the Brain Communicate With Each Other

Ultrafast signal transmission between neurons is vital for normal neurologic and cognitive function. In the brain, cell-to-cell communication occurs at the junction that connects two neurons - a structure known as a synapse.

At any given moment, neurotransmitter-carrying vesicles are on standby at designated docking stations, called active zones, each awaiting a trigger to release its load across the synaptic cleft and deliver it to the next neuron.

Advertisement


Signal strength and speed are determined by the number of vesicles ready and capable of releasing their cargo to the next neuron.

Neuroscientists have thus far surmised that destroying the docking stations that house neurotransmitter-loaded bubbles would cause all cell-to-cell communication to cease. A new study by the  Harvard Medical School suggest otherwise.
Advertisement

The mice study reveals that dismantling the docking stations that house these signal-carrying vessels does not fully disrupt signal transmission between cells. The team's experiments, described in the journal Neuron, suggest the presence of mechanisms that help maintain partial communication despite serious structural aberrations.

"Our results not only address one of the most fundamental questions about neuronal activity and the way cells in the brain communicate with each other but uncover a few surprises too," said Pascal Kaeser, senior author on the study and assistant professor of neurobiology at HMS.

"Our findings point to a fascinating underlying resilience in the nervous system."

To examine the relationship between docking stations and signal transmission, researchers analyzed brain cells from mice genetically altered to lack two key building proteins, the absence of which led to the dismantling of the entire docking station.

When researchers measured signal strength in neurons with missing docking stations, they observed that those cells emitted much weaker signals when demand to transmit information was low. However, when stronger triggers were present, these cells transmitted remarkably robust signals, the researchers noticed.

"We would have guessed that signal transmission would cease altogether but it didn't," said Shan Shan Wang, a neuroscience graduate student in Kaeser's lab and a co-first author of the study. "Neurons appear to retain some residual communication even with a key piece of their communication apparatus missing."

Elimination of one active zone building block, a protein called RIM, led to a three-quarter reduction in the pool of vesicles ready for release. Disruption of another key structural protein, ELKS, resulted in one-third fewer ready-to-deploy vesicles. When both proteins were missing, however, the total reduction in the number of releasable vesicles was far less than expected. More than 40% of a neuron's vesicles remained in a "ready to launch" state even with the entire docking station broken down and vesicles failing to dock.

The finding suggests that not all launch-ready vesicles need to be docked in the active zone when a trigger arrives. Neurons, the researchers say, appear to form a remote critical reserve of vesicles that can be quickly marshaled in times of high demand.

"In the absence of a docking sites, we observed that vesicles could be quickly recruited from afar when the need arises," said Richard Held, an HMS graduate student in neuroscience and co-first author on the paper.

The team cautions that any clinical implications remain far off, but say that their observations may help explain how defects in genes responsible for making neuronal docking stations may be implicated in a range of neurodevelopmental disorders.

Source: Newswise
Advertisement

Advertisement
Advertisement

Recommended Reading

Latest Research News

Nearsightedness: Atropine Eye Drops may Slow Progression in Kids
A recent clinical trial suggests that the first medication therapy to reduce the progression of nearsightedness in children could be on the way.
Autoimmune Diseases Affect One in Ten: Study
Autoimmune disorders were found to be linked to Sjogren's, systemic lupus erythematosus, and systemic sclerosis.
Remarkable Journey of Transforming Lives With Brain Pacemaker
Successful brain pacemaker implantation has helped a 51year old Parkinson's disease patient to revitalize her quality of life.
What Are the Effects of Healthy Lifestyle on Osteoarthritis?
Recent recommendations on lifestyle behaviors to prevent progression of rheumatic and musculoskeletal diseases revealed.
Unraveling the Mystery of Psoriasis Severity
The study offers insights into how psoriasis can trigger diabetes, heart disease, and inflammatory bowel disease.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
×

How Cells in the Brain Communicate With Each Other Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests