Highights:
- Mussels help in treating myocardial infarction (MI)
- A protein from mussels and stem cells help the damaged heart muscles to form new blood vessel, prevent further apoptosis and regenerate the damaged cardiac wall by reducing fibrosis
- This treatment can also be successfully applied to treat chronic diseases and ischemic diseases
By employing the phase separation phenomenon of mussel adhesive protein, they were able to easily encapsulate the MSCs in the liquid coacervate. Especially, based on the mass production of bioengineered mussel adhesive protein, their newly suggested platform can be expected to be an innovative therapeutic system for myocardial infarction.
Heart, The Vital Organ
Heart is a vital organ that circulates blood while repeating contraction and relaxation of muscles by electrical signals. When blood vessels are clogged, oxygens and nutrients cannot be supplied to the heart and it brings severe damages to a muscle of the heart, causing infarcted myocardium with disruption of blood networks. This causes a necrosis on wall of the myocardium, resulting in cardiac wall thinning and this phenomenon is known as myocardial infarction. Because the heart cannot regenerate itself when it is damaged, there is no method for innovatively regenerating damaged heart muscles. As current therapeutic strategies, patients are treated with either mechanical device or heart transplantation.
Recently, there have been numbers of research proposing on transplanting exogenous stem cells into the damaged myocardium to help heart regeneration as a future treatment technique. However, transplanted stem cells have very low survival rate due to harsh environment of the heart. Even when the transplantation is successful, most of the stems cells soon die.
For a successful stem cell therapy on MI, there are two conditions required to survive in harsh environment of the damaged heart. First, the stem cells must be efficiently transplanted and remained into the thinned cardiac muscles. Secondly, transplanted stem cells must integrate rapidly into resident surrounding tissues to improve their viability by forming blood vessels. However, the current therapeutic methods so far cannot deliver injected stem cells to infarcted cardiac muscular tissues successfully, making it very difficult to maintain the transplantation.
It is anticipated that the new stem cell delivery system proposed in this research will play an essential role in the stem cell therapeutic market as it used biocompatible materials which are harmless to humans.
"By using mussel adhesive proteins, we demonstrated with the MI rat model and proved its therapeutic efficacy as an efficient stem cell injection strategy. We give a hope that it can also be successfully applied to chronic diseases and ischemic diseases that have similar environment," said Prof. Hyung Joon Cha who led the research.
In the meanwhile, this research was introduced as the most innovative technology found by POSTECH in the Most Innovative Universities 2019 by Reuters last year. It is also published on the website of Journal of Controlled Release, the world’s most renowned journal in the field of drug delivery. This study was supported by the Marine BioMaterials Research Center grant funded by the Ministry of Oceans and Fisheries, Korea.
Source-Eurekalert