Autism can be Diagnosed With Blood and Urine Tests

Autism can be Diagnosed With Blood and Urine Tests

by Julia Samuel on  February 19, 2018 at 1:11 PM Health Watch
RSS Email Print This Page Comment bookmark
Font : A-A+

Highlights:
  • Certain biomarkers in blood and urine which indicate damaged proteins can help diagnose autism.
  • The newly developed blood and urine tests could lead to earlier detection of autism and appropriate treatment can be started much earlier.
  • The tests may also help identify the causes of autism.
New tests using blood and urine samples that can indicate autism in children have been developed by researchers at the University of Warwick.
Autism can be Diagnosed With Blood and Urine Tests

The tests could lead to earlier detection of autism spectrum disorders (ASD) and consequently, children with autism could be given appropriate treatment much earlier in their lives.

The research team found a link between ASD and damage to proteins in blood plasma by oxidation and glycation - processes where reactive oxygen species (ROS) and sugar molecules spontaneously modify proteins.

They found the most reliable of the tests they developed was examining protein in blood plasma where, when tested, children with ASD were found to have higher levels of the oxidation marker dityrosine (DT) and certain sugar-modified compounds called "advanced glycation endproducts" (AGEs).

Autism Spectrum Disorders - Difficult to Diagnose

ASDs are defined as developmental disorders mainly affecting social interaction and they can include a wide spectrum of behavioral problems. These include speech disturbances, repetitive and/or compulsive behavior, hyperactivity, anxiety, and difficulty to adapt to new environments, some with or without cognitive impairment. Since there is a wide range of ASD symptoms diagnosis can be difficult and uncertain, particularly at the early stages of development.

Dr Naila Rabbani, Reader of Experimental Systems Biology at the University of Warwick who said: "Our discovery could lead to earlier diagnosis and intervention." We hope the tests will also reveal new causative factors. With further testing, we may reveal specific plasma and urinary profiles or "fingerprints" of compounds with damaging modifications. This may help us improve the diagnosis of ASD and point the way to new causes of ASD."

Damaged Proteins in Blood

The team found a link between ASD and damage to proteins in blood plasma by oxidation and glycation - processes where reactive oxygen species (ROS) and sugar molecules spontaneously modify proteins. They found the most reliable of the tests they developed was examining protein in blood plasma where, when tested, children with ASD were found to have higher levels of the oxidation marker dityrosine (DT) and certain sugar-modified compounds called "advanced glycation endproducts" (AGEs).

Genetic causes have been found in 30-35% of cases of ASD and the remaining 65-70% of cases are thought to be caused by a combination of environmental factors, multiple mutations, and rare genetic variants. However, the research team also believe that the new tests could reveal yet to be identified causes of ASD.

The team's research also confirmed the previously held belief that mutations of amino acid transporters are a genetic variant associated with ASD. The Warwick team worked with collaborators at the University of Bologna, Italy, who recruited locally 38 children who were diagnosed as having with ASD (29 boys and nine girls) and a control group of 31 healthy children (23 boys and eight girls) between the ages of five and 12. Blood and urine samples were taken from the children for analysis.

Diagnostic Test For Autism

The Warwick team discovered that there were chemical differences between the two groups. Working with a further collaborator at the University of Birmingham, the changes in multiple compounds were combined together using artificial intelligence algorithms techniques to develop a mathematical equation or "algorithm" to distinguish between ASD and healthy controls. The outcome was a diagnostic test better than any method currently available.

The next steps are to repeat the study with further groups of children to confirm the good diagnostic performance and to assess if the test can identify ASD at very early stages, indicate how the ASD is likely to develop further to more severe disease and assess if treatments are working.

Reference
  1. Attia Anwar et al., 'Advanced glycation endproducts, dityrosine, and arginine transporter dysfunction in autism -- a source of biomarkers for clinical diagnosis'. Molecular Autism (2018). DOI 10.1186/s13229-017-0183-3.


Source: Medindia

Post a Comment

Comments should be on the topic and should not be abusive. The editorial team reserves the right to review and moderate the comments posted on the site.
Notify me when reply is posted
I agree to the terms and conditions

Related Links

More News on:

Autism Thalassemia Urinary Stones In Children Vesico-Ureteric Reflux Causing UTI in Children Diet for Kidney stones Rett Syndrome Acquired Epileptiform Aphasia Blood in Stools - Symptom Evaluation Bombay Blood Group 

News A - Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

News Search

Medindia Newsletters

Subscribe to our Free Newsletters!

Terms & Conditions and Privacy Policy.

Find a Doctor

Stay Connected

  • Available on the Android Market
  • Available on the App Store

News Category

News Archive

Loading...