Medindia LOGIN REGISTER
Medindia

Hard Blows to Head May Affect Brain, Learning and Memory

by Bidita Debnath on Dec 13 2013 11:13 PM

Even in the absence of a concussion, blows to the head during a single season of football or ice hockey may affect the brain's white matter and cognition, or memory and thinking abilities, suggests a new research.

 Hard Blows to Head May Affect Brain, Learning and Memory
Even in the absence of a concussion, blows to the head during a single season of football or ice hockey may affect the brain's white matter and cognition, or memory and thinking abilities, suggests a new research.
The study is published in the December 11, 2013, online issue of Neurology®, the medical journal of the American Academy of Neurology. White matter is brain tissue that plays an important role in the speed of nerve signals.

"We found differences in the white matter of the brain in these college contact sport athletes compared to non-contact sport varsity athletes," said study author Thomas W. McAllister, MD, of Indiana University School of Medicine in Indianapolis. "The degree of white matter change in the contact sport athletes was greater in those who performed more poorly than expected on tests of memory and learning, suggesting a possible link in some athletes between how hard/often they are hit, white matter changes, and cognition, or memory and thinking abilities."

The work was completed while McAllister was with the Geisel School of Medicine at Dartmouth in Hanover, NH.

The study involved 80 concussion-free Division I NCAA Dartmouth College varsity football and ice hockey players who wore helmets that recorded the acceleration-time of the head following impact. They were compared to 79 non-contact sport athletes in activities such as track, crew and Nordic skiing. The players were assessed before and shortly after the season with brain scans and learning and memory tests.

The study found that a subgroup of both types of athletes performed worse than predicted on a test of verbal learning and memory at the end of the season. A total of 20 percent of the contact players and 11 percent of the non-contact athletes scored more than 1.5 standard deviations below the predicted score. McAllister said a decline this large would have been expected in less than seven percent of a normal population. This subgroup showed more change in the corpus callosum region of the brain than the athletes who scored as predicted on the test. The corpus callosum is a bundle of nerves that connects the right and left sides of the brain.

"This group of athletes with different susceptibility to repetitive head impacts raises the question of what underlying factors might account for the changes in learning and memory, and whether those effects are long-term or short-lived," said McAllister.

Advertisement
The study was supported by the National Institutes of Health and the National Operating Committee on Standards for Athletic Equipment.

To learn more about concussion, please visit www.aan.com/concussion.

Advertisement
The American Academy of Neurology, an association of more than 26,000 neurologists and neuroscience professionals, is dedicated to promoting the highest quality patient-centered neurologic care. A neurologist is a doctor with specialized training in diagnosing, treating and managing disorders of the brain and nervous system such as Alzheimer's disease, stroke, migraine, multiple sclerosis, brain injury, Parkinson's disease and epilepsy.

Source-Newswise


Advertisement