Abundantly found in macrophages, non-coding RNA (lincRNA) or lincRNA-EPS keeps the genes that trigger inflammation turned off until a pathogen is encountered.

TOP INSIGHT
A long non-coding RNA (lincRNA), called lincRNA-EPS, keeps the expression of immune genes in check by controlling the position of the nucleosome so they are inaccessible.
Long non-coding RNAs are non-protein coding transcripts arbitrarily defined as longer than 200 nucleotides (to help distinguish them from microRNA, short interfering RNAs, Piwi-interacting RNAs and other short RNAs). "Despite their abundance, little is known about the functions of these long RNAs play in the immune system," said Fitzgerald. "In trying to understand the complex genetic circuitry that controls the immune system, immunologists have historically focused on the 2 percent of the genome that code for proteins."
Using a mouse model lacking lincRNA-EPS, Fitzgerald and colleagues showed that in their normal state, macrophages (a type of white blood cell that defends against infections) produce lincRNA-EPS to prevent the spontaneous activation of immune response genes. However, when macrophages detect a potential pathogen, lincRNA-EPS expression is suppressed to release this brake, and the pro-inflammatory response is initiated. Mice that were lacking lincRNA-EPS exhibited increased levels of cytokines and inflammatory responses that led to toxic shock.
Researchers found that lincRNA-EPS keeps the expression of immune genes in check by controlling the position of the nucleosome so they are inaccessible. When lincRNA-EPS is no longer expressed in the cells, the structure of the genome changes so critical immune-related genes are exposed for transcription. When researchers reintroduced lincRNA-EPS into the cell, expression of immune genes returned to normal levels.
"We have also found that the expression of lincRNA-EPS itself is very carefully regulated and is very sensitive to slight changes," said Maninjay K. Atianand, PhD, a postdoctoral fellow at UMMS and first author of the study. "This lincRNA is an important component in the molecular circuitry to prevent spontaneous activation of key immune genes. These findings have important implications for the potential role that lincRNAs may play in chronic inflammation and immune pathologies."
Source-Newswise
MEDINDIA




Email






