Evolutionary Course of Helicobacter Pylori to Survive in the Stomach

by Dr. Trupti Shirole on  December 23, 2016 at 11:47 PM Research News
RSS Email Print This Page Comment bookmark
Font : A-A+

The Helicobacter pylori bacterium causes gastric infections. Professor Frédéric Veyrier's most recent research, in collaboration with the team of Professor Hilde De Reuse at the Institut Pasteur, has shed light on key genes essential to the pathogenesis of Helicobacter pylori bacterium.
 Evolutionary Course of Helicobacter Pylori to Survive in the Stomach
Evolutionary Course of Helicobacter Pylori to Survive in the Stomach

Like other microorganisms, this pathogen underwent genetic modifications through the course of evolution that enabled it to adapt to its environment.

Nickel is in fact the evolutionary key that allows the pathogen to survive the very acid conditions of the stomach.

This metal is a cofactor of two essential proteins, one of which is urease, an enzyme that neutralizes gastric acid. Therefore, to colonize the stomach, the pathogen needs an efficient nickel transport system.

By examining the bacterium's entire genome, the research team identified a new nickel transporter that appears to be essential for the metal acquisition. Once inside the bacterial cell, nickel regulates the synthesis of urease, which in turn neutralizes the acid from the stomach.

This gene, along with a number of other genes encoding proteins involved in nickel homeostasis, has been acquired a long time ago by the bacterium via horizontal gene transfer.

Metals are often key players during bacterial pathogenesis. It is the case for many other microorganisms, including pathogenic strains of Escherichia coli, in which iron plays a major role in its ability to infect the host.

However, the genetic reshuffling leading to metal homeostasis modifications in Helicobacter pylori and allowing it to adapt to the gastric environment seems to be quite unique.

Further genetic studies should enable researchers to identify other genes that have been dropped or acquired through evolution, giving microorganisms the characteristics they need to colonize their hosts and cause disease.

In a way, we can think of these genes as messengers from the past. This research work will be used to develop strategies for fighting these infections.

Source: Eurekalert

Post a Comment

Comments should be on the topic and should not be abusive. The editorial team reserves the right to review and moderate the comments posted on the site.
Notify me when reply is posted
I agree to the terms and conditions
Advertisement

More News on:

Acid Peptic Disease COX - 2 Inhibitors 

News A - Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

News Search

Medindia Newsletters

Subscribe to our Free Newsletters!

Terms & Conditions and Privacy Policy.

Find a Doctor

Stay Connected

  • Available on the Android Market
  • Available on the App Store

News Category

News Archive