About My Health Careers Internship MedBlogs Contact us

EPO Hormone After Myocardial Infarction Could Limit Heart Damage

by Gopalan on October 9, 2008 at 10:32 AM
Font : A-A+

 EPO Hormone After Myocardial Infarction Could Limit Heart Damage

A single intravenous dose of hormone erythropoietin (EPO) immediately after myocardial infarction could limit heart damage, Japanese scientists say.

Two things happen following a heart attack—necrosis (normal cell death) and apoptosis (programmed cell death)—and both are bad.


Now researchers in Japan have found that EPO could drastically reduce or eliminate apoptosis and thereby limit the amount of damage to the heart, according to an article in the October issue of The Journal of Nuclear Medicine.

"The study's concept is very novel. We wanted to see if the area of cell death following acute coronary occlusion could be reduced by a single dose of EPO," said H William. Strauss, attending physician in the Nuclear Medicine Service at Memorial Sloan Kettering Cancer Center, professor of radiology at Weill Cornell School of Medicine and a co-author of the manuscript.

"Cells deprived of blood quickly begin to die. By administering 99mTc-annexin V, a radiotracer with a high affinity for apoptotic cells, we were able to view the effects of EPO on heart cells immediately following the restriction of blood flow that occurs during MI."

In the study, 18 Wistar rats were randomized into two groups. In both groups, arteries were blocked to induce a heart attack; 20 minutes later, they were unblocked. Immediately afterward, one group (treatment) received an injection of EPO and the other group of saline (non-treatment). Both groups were then injected with 99mTc-annexin V, and their hearts were examined using autoradiography to evaluate the distribution of the radiotracer.

In the treatment group, EPO therapy caused a 2.7-fold reduction of tracer accumulation, indicating a reduction in apoptosis and, therefore, less damage to heart tissue. The reduction in damage to the heart was also demonstrated by measurement of regional cardiac function, which was significantly better in the EPO-treated group. These findings suggest that EPO may be useful to prevent long-term heart damage and dysfunction after a heart attack.

"Although other drugs to inhibit apoptosis have been studied, none appears nearly as effective as a single dose of EPO," Strauss said.

EPO is a naturally occurring hormone that promotes the formation of red blood cells in the bone marrow. It was first produced artificially to aid in the treatment of anemia. More recently, scientists discovered its cardioprotective capability in minimizing apoptosis.

Apoptosis is sometimes referred to as "cell suicide," because the biochemically programmed mechanism triggers damaged cells to self-destruct, albeit in an orderly way. Researchers have found that cells can die by several pathways, only one of which is apoptosis. Because cell death is central to normal physiology and numerous disease states, research into apoptosis is ongoing in a variety of medical areas, including oncology and cardiology.

"In cardiovascular medicine, imaging of apoptosis could be highly useful in managing myocardial infarction, atherosclerotic plaques [hardening of the arteries] and cardiac allograft rejection [heart transplant rejection]. Because molecular probes such as 99mTc-annexin V are capable of imaging apoptosis in living patients, they are vital to this research," said Robert W. Atcher, president of SNM, an international scientific and medical association dedicated to advancing molecular imaging and therapy.

"More translational research is needed to evaluate cell death pathways and their significance for imaging in the diagnosis or monitoring of disease. SNM is currently working with molecular imaging practitioners, government agencies and pharmaceutical manufacturers to streamline the process to progress promising molecular imaging agents from the laboratory into the clinical setting, " Atcher added.

Source: Eurekalert

News A-Z
News Category
What's New on Medindia
International Day of Persons with Disabilities 2021 - Fighting for Rights in the Post-COVID Era
Effect of Blood Group Type on COVID-19 Risk and Severity
Woman with Rare Spinal Cord Defect from Birth Sues Doctor
View all

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Evening Primrose Oil Heart Healthy Heart Statins Mitral Valve Prolapse Aortic Valve Stenosis Cardiac Markers Pericarditis Cardiogenic Shock Erythropoietin (EPO) - Facts and Mode of Action 
Recommended Reading
Aortic Valve Stenosis
Aortic valve Stenosis is an abnormal narrowing of the c valve. Symptoms include angina, and that of ...
Cardiac Markers
Cardiac markers are biomarkers which are measured to evaluate the function of heart. The test for tr...
Cardiogenic Shock
Cardiogenic shock is defined as reduced cardiac output due to inability of the heart to pump adequat...
Erythropoietin (EPO) - Facts and Mode of Action
Erythropoietin is a hormone secreted by kidneys in response to low oxygen levels in tissues (hypoxia...
Evening Primrose Oil
Evening Primrose Oil (EPO) is derived from the seeds of the evening primrose plant (Oenthera biennis...
Mitral Valve Prolapse
Mitral Valve Prolapse is a relatively common condition and causes leakage of blood through the valve...
Pericarditis occurs when the pericardium gets inflamed. Pericarditis is characterized by severe ches...
Statins are new wonder drugs that are proving to be efficacious, not merely in relieving symptoms bu...

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2021

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use