Enzyme Detects Ultraviolet Light Damage

by Colleen Fleiss on  August 24, 2018 at 3:10 AM Cancer News
RSS Email Print This Page Comment bookmark
Font : A-A+

Thymine dimmers, a type of RNA polymerase are caused by exposure to UV light, such as sunlight, which causes neighboring thymine base pairs to bond, disrupting the DNA strand. Untreated, these lesions may eventually result in cancerous growths, such as melanoma, stated study published in PNAS and conducted by University of California San Diego School of Medicine researchers.
Enzyme Detects Ultraviolet Light Damage
Enzyme Detects Ultraviolet Light Damage

Called thymine dimers, DNA lesions are damage sites to the base pairs that comprise the structure of DNA. RNA polymerase I (Pol I) is an enzyme responsible for up to 60 percent of total transcriptional activity in growing cells. It is a key determinant for cell growth control, and is also responsible for identifying lesions and activating repairs at the rDNA region, a DNA sequence that codes for ribosomal RNA.

"It's the most active RNA polymerase in growing cells and so its ability to identify lesions has significant influence on whether a cell can survive UV-caused genetic damage," said co-corresponding author Dong Wang, PhD, associate professor in the Skaggs School of Pharmacy and Pharmaceutical Sciences and the Department of Cellular and Molecular Medicine at UC San Diego. "However, little is known about how this enzyme actually processes UV-induced lesions."

In the new study, Wang's lab, in collaboration with Carlos Fenandez-Tornero, PhD, molecular biologist, and colleagues at the Spanish National Research Council in Madrid, combined in vitro enzymatic activity studies with electron cryomicroscopy to characterize the mechanisms that stall Pol I as it approaches a lesion to begin recruiting proteins responsible for DNA repair. They found that Pol I is able to sense the DNA lesion through specific interactions with both the damaged base and the DNA backbone, stalling right before the lesion reaches the active site of RNA Pol I.

Additionally, the study identified a key amino acid among more than 5,000 that constitute Pol I that is essential to detecting DNA lesions formed by UV damage. Interestingly, this Pol I-specific residue does not exist in other forms RNA polymerases. Mutation studies suggest that this residue is important in controlling the polymerase stall profile at DNA lesions.

Because RNA Pol I is a key determinant for cell growth control, it is also an attractive cancer therapeutic target, said Wang, who suggested the findings could open a new avenue for the development of novel anticancer drugs that target RNA Pol I transcription machinery.

Source: Eurekalert

Post a Comment

Comments should be on the topic and should not be abusive. The editorial team reserves the right to review and moderate the comments posted on the site.
Notify me when reply is posted
I agree to the terms and conditions
Advertisement

More News on:

Ultra-Violet Radiation Food Preservatives - How Safe Are They? 

News A - Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

News Search

Medindia Newsletters

Subscribe to our Free Newsletters!

Terms & Conditions and Privacy Policy.

Find a Doctor

Stay Connected

  • Available on the Android Market
  • Available on the App Store

News Category

News Archive