About Careers MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

DNA Mutations can be Traced

by Julia Samuel on December 24, 2014 at 2:27 PM
Font : A-A+

DNA Mutations can be Traced

Researchers have developed a new technique to find out which DNA mutations cause disease.

A Canadian research team at the University of Toronto led by professor Brendan Frey has developed the first method for 'ranking' genetic mutations based on how living cells 'read' DNA, revealing how likely any given alteration is to cause disease.

Advertisement

They used their method to discover unexpected genetic determinants of autism, hereditary cancers and spinal muscular atrophy, a leading genetic cause of infant mortality.

"Over the past decade, a huge amount of effort has been invested into searching for mutations in the genome that cause disease, without a rational approach to understanding why they cause disease," says Frey, also a senior fellow at the Canadian Institute for Advanced Research. "This is because scientists didn't have the means to understand the text of the genome and how mutations in it can change the meaning of that text."
Advertisement

What was Frey's approach? We know that certain sections of the text, called exons, describe the proteins that are the building blocks of all living cells. What wasn't appreciated until recently is that other sections, called introns, contain instructions for how to cut and paste exons together, determining which proteins will be produced. This 'splicing' process is a crucial step in the cell's process of converting DNA into proteins, and its disruption is known to contribute to many diseases.

Frey's team used a new technology called 'deep learning' to teach a computer system to scan a piece of DNA, read the genetic instructions that specify how to splice together sections that code for proteins, and determine which proteins will be produced.

Unlike other machine learning methods, deep learning can make sense of incredibly complex relationships, such as those found in living systems in biology and medicine. "The success of our project relied crucially on using the latest deep learning methods to analyze the most advanced experimental biology data," says Frey.

Once they had taught their system how to read the text of the genome, Frey's team used it to search for mutations that cause splicing to go wrong. They found that their method correctly predicted 94 percent of the genetic culprits behind well-studied diseases such as spinal muscular atrophy and colorectal cancer, but more importantly, made accurate predictions for mutations that had never been seen before.

They then launched a huge effort to tackle a condition with complex genetic underpinnings: autism spectrum disorder. "With autism there are only a few dozen genes definitely known to be involved and these account for a small proportion of individuals with this condition," says Frey.

In collaboration with Dr. Stephen Scherer, senior scientist and director of The Centre for Applied Genomics at SickKids and the University of Toronto McLaughlin Centre, Frey's team compared mutations discovered in the whole genome sequences of children with autism, but not in controls. Following the traditional approach of studying protein-coding regions, they found no differences.

However, when they used their deep learning system to rank mutations according to how much they change splicing, surprising patterns appeared. "When we ranked mutations using our method, striking patterns emerged, revealing 39 novel genes having a potential role in autism susceptibility," Frey says. And autism is just the beginning—this mutation indexing method is ready to be applied to any number of diseases, and even non-disease traits that differ between individuals.

Dr. Juan Valcárcel Juárez, a researcher with the Center for Genomic Regulation in Barcelona, Spain, who was not involved in this research, says: "In a way it is like having a language translator: it allows you to understand another language, even if full command of that language will require that you also study the underlying grammar. The work provides important information for personalized medicine, clearly a key component of future therapies."

Source: Medindia
Advertisement

Advertisement
Advertisement

Recommended Reading

Latest Research News

 Experiments on Child Brain Tumour and Muscle Ageing Heading to Space
The International Space Station will be used to carry out experiments seeking to improve understanding of incurable child brain tumors and the muscle aging process.
 Nearly 1 In 5 UK Adults Experience Negative Responses to Sounds
How many people in the UK have misophonia? In a representative sample study, most people had at least some irritation upon hearing trigger sounds.
Why Are 1 in 8 Indians at Risk of Irreversible Blindness
Routine eye-checkups and mass screenings enable early diagnosis and treatment of glaucoma. Late-stage glaucoma diagnosis leads to blindness.
 Blind People Feel Their Heartbeat Better Than Those With Sight
Brain plasticity following blindness leads to superior ability in sensing signals from the heart, which has implications for bodily awareness and emotional processing.
New Biomarkers Help Detect Alzheimer's Disease Early
A group of scientists were awarded £1.3 million to create a new “point of care testing” kit that detects Alzheimer's disease biomarkers.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
×

DNA Mutations can be Traced Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests