A new unsettling discovery about the adverse impact of diabetes. It can affect the generation of cholesterol in the brain, leading eventually to the Alzheimer’s disease.
A new unsettling discovery about the adverse impact of diabetes. It can affect the generation of cholesterol in the brain, leading eventually to the Alzheimer’s disease, say US researchers. Scientists in the laboratory of C. Ronald Kahn, M.D., head of Integrative Physiology and Metabolism research section at the Joslin Diabetes Center, Boston, found that brain cholesterol synthesis, the only source of cholesterol for the brain, drops in several mouse models of diabetes. Their work was reported online in the journal Cell Metabolism on November 30.
“Since cholesterol is required by neurons to form synapses (connections) with other cells, this decrease in cholesterol could affect how nerves function for appetite regulation, behavior, memory and even pain and motor activity,” says Dr. Kahn, who is also Mary K. Iacocca Professor of Medicine at Harvard Medical School. “Thus, this has broad implications for people with diabetes.” Other investigations have gathered strong evidence that people with diabetes may display varying types of alterations in brain function or ways of responding to stress, he points out.
“It is well known that insulin and diabetes play an important role in regulating cholesterol synthesis in the liver, where most of the cholesterol circulating in blood comes from,” Dr. Kahn adds. “But nobody had ever suspected that insulin and diabetes would play an important role in cholesterol synthesis in the brain.”
In addition to its potential role in Alzheimer’s disease and other forms of neurological dysfunction, the newly discovered mechanism may play a role in diabetic neuropathy, which remains a large challenge for therapy.
People with diabetes are also known to be more prone to depression, memory loss and eating disorders than people without diabetes, and imaging studies have shown that people with diabetes have altered brain function compared to those without.
Additionally, the finding raises a question about potential interactions between anti-cholesterol drugs and diabetes.
Advertisement
“Our studies showed that these effects occurred in both the neurons and supporting ‘glial’ cells that help provide some nutrients to the neurons,” says Kahn. “Ultimately this affects the amount of cholesterol that can get into the membranes of the neuron, which form the synapses and the synaptic vesicles — the small structures that contain neurotransmitters.”
Advertisement
Ryo Suzuki, Ph.D., a postdoctoral researcher in the Kahn lab, is first author on the paper.
Source-Medindia