About My Health Careers Internship MedBlogs Contact us
Medindia LOGIN REGISTER
Advertisement

Converting Blood Vessels to Blood Stem Cells

by Anjali Aryamvally on March 21, 2018 at 12:58 PM
Font : A-A+

Converting Blood Vessels to Blood Stem Cells

A newly discovered 'switch' instructs blood vessel cells to become blood stem cells during embryonic development in mice. Two sets of specific factors in the cells work against each other, and when the balance of these changes, the vascular tube cells convert to free blood cells, discovered a research team from the Wellcome Sanger Institute in Cambridge and the European Molecular Biology Laboratory in Rome.

Reported in eLife, these findings could pave the way for further research into creating new blood cells for transplants and for understanding cancer development.

Advertisement


Blood vessels and blood cells develop from stem cells in the embryo. In fact, the blood stem cells, responsible for the generation of all blood cell types, develop from the vascular cells which line the walls of blood vessels. This process happens in fish, birds and mammals, and is critical for the formation of blood cells. However how these vascular cells decide when to transform into blood stem cells was unknown.

To understand the process of blood cell development the researchers studied seven factors -transcription factors - known to be important in blood cancers, using a powerful new technology called single cell transcriptomics. They discovered that in mouse embryo cells that were transitioning between vascular cells and blood cells, all seven of these factors were expressed together. However, when they engineered various combinations of these transcription factors into embryonic stem cell lines (ESCs), used to model embryonic blood development in the dish, they discovered the factors split unexpectedly into two distinct sets, one supporting the vascular cell fate and the other the blood program.
Advertisement

The researchers discovered there was a balance between the two sets of transcription factors. High levels of each set of transcription factors acted as a switch for the mouse embryo to choose whether to maintain vascular cells, or to develop them into blood stem cells.

Dr Martin Hemberg, a corresponding author on the paper from the Wellcome Sanger Institute, said: "This was the first time that anyone has been able to show how a group of transcription factors causes a vascular cell to choose to develop into a blood stem cell, and demonstrates the power of single-cell transcriptomics for characterising really complex systems of transcription factors. Using this technology, we could see the exact genes that were switched on in every single cell, and found that the transcription factors acted as a fork in the road of development of blood cells."

The study was highly technically challenging. Not only was it difficult to express so many transcription factors simultaneously in ESCs, it was also the first time that single-cell transcriptomics had been used to study a large complex of transcription factors.

Dr Tallulah Andrews, joint second author on the paper from the Wellcome Sanger Institute, said: "This was a very challenging computational problem as there was a huge network of interactions in the complex that needed to be unravelled. By applying recent advances in statistics to this biological question, we were able to predict that some of the transcription factors were acting in opposition to each other like a switch, rather than working together, which the study was then able to prove experimentally."

The knowledge gained in the study could aid further research towards the creation of blood stem cells for use in transfusions or blood cancer treatments, and could also help in the understanding of metastasis, which is when cancer cells spread to other organs.

Dr Christophe Lancrin, a corresponding author on the paper from the European Molecular Biology Laboratory, Rome, said: "We have revealed the gene regulatory network responsible for switching off the vascular cell fate and switching on the blood program to generate blood stem cells. Interestingly, the process of metastasis in cancer also involves changes in cell states and may use a similar process to the one we have discovered. If we could better understand how the transcription factors responsible for different cell states compete with each other we could begin to think of ways to specifically inhibit this process and improve the chance of survival of cancer patients."



Source: Eurekalert
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Advertisement
News Category
What's New on Medindia
Coffee May Help You Fight Endometrial Cancer
Fermented Skin Care
Television Binge-Watching May Boost the Risk of Deadly Blood Clots
View all

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Stem Cells - Cord Blood Thalassemia Stem Cells - Fundamentals Parkinsons Disease Surgical Treatment Genetics and Stem Cells Bone Marrow Transplantation Tissue Engineering and Regenerative Medicine Stem Cells Blood in Stools - Symptom Evaluation Bombay Blood Group 

Recommended Reading
Nanoparticles Reduce Growth of Blood Vessels
Scientists find 80% reduction in liver metastasis brought about by colon cancer. Nanoparticles were ...
Breakthrough in the Prevention of Damage to Healthy Blood Vessels
The new finding of the interaction between two proteins (SOCS3 and Cavin-1) could provide a ......
3D Model Offers Better Study of Blood Vessels
A new device that models atherosclerosis can help researchers better understand the disease, ......
New Scientific Statement Examines Effect of Diabetes on Blood Vessels
Scientific statement captures evolving understanding of eye, kidney and nerve complications....
Blood in Stools - Symptom Evaluation
Blood in stools results from bleeding that arises from any part of the digestive tract. Causes of bl...
Bombay Blood Group
Bombay blood group is a rare blood type in which the people have an H antigen deficiency. They can r...
Bone Marrow Transplantation
Preferred Term is Hematopoietic stem cell transplantation. In this stem cell from bone marrow are in...
Stem Cells - Fundamentals
Encyclopedia section of medindia gives general info about Stem Cells...
Stem Cells - Cord Blood
Encyclopedia section of medindia gives general info about Cord Blood...
Thalassemia
Thalassemia is an inherited blood disorder passed on through parental genes causing the body to prod...
Tissue Engineering and Regenerative Medicine
This new field is an amalgamation of biology, medicine and engineering, and is believed to have mind...

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2022

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use
open close
CONSULT A DOCTOR
I have read and I do accept terms of use - Telemedicine

Advantage Medindia: FREE subscription for 'Personalised Health & Wellness website with consultation' (Value Rs.300/-)