Widespread connections among neurons help the brain differentiate between smells, a new study at the Salt Lake Institute finds. Each odor has a fingerprint that's based on the strength of the connections.

TOP INSIGHT
The ability to differentiate between different smell does not depend on one cell but a connection of many cells in the brain.
"We haven't been able to discern any order in the piriform cortex connections in any species," says coauthor Shyam Srinivasan, an assistant project scientist at the University of California San Diego's Kavli Institute for Brain and Mind. "Any given odor lights up about 10 percent of neurons that seem to be scattered all over the piriform cortex."
To start working out the details of how the piriform cortex encodes odor information, and whether its connections are truly random, Stevens and Srinivasan analyzed the piriform cortices of nine mice using a variety of staining and microscopy techniques that let them visualize different cell types in the brain region. Their first goal: to quantify the number and density of cells in the piriform cortex.
"This was really like a survey," explains Srinivasan. "We counted the cells in different representative areas and averaged them across the whole region."
The mouse piriform cortex, they concluded, has around half a million neurons in it, divided equally between the larger, less dense posterior piriform and the smaller, more dense anterior piriform.
"Every cell in the piriform is getting information from essentially every odor receptor there is," says Stevens. "There's not one 'coffee smell' neuron but a whole bunch of coffee cell neurons all over the place." Rather than a single receptor detecting one odor and lighting up one cluster of telltale neurons, he explains, each odor has a fingerprint that's based more on the strength of the connections, while the smell of coffee may activate nearly the same neurons in the piriform cortex as the smell of chocolate, they'll activate each neuron to a different degree.
The researchers would like to repeat the work in other animals to see where similarities and differences lie. They also are interested in looking into other areas of the brain that have long been assumed to be dominated by seemingly random connections to see if they're organized in the same way.
Stevens and Srinivasan were funded by the Kavli Institute for Brain and Mind at UC San Diego and the National Science Foundation.
The research is published in the Journal of Comparative Neurology.
Source-Eurekalert
MEDINDIA




Email








