Chemicals that keep drinking water flowing may also cause fouling as these agents may amplify the risk of pathogen release into drinking water by weakening the grip that bacteria have on pipe interiors.

‘Chemicals that prevent pipe-clogging may increase the risk of pathogen release into drinking water by weakening the grip that bacteria have on pipe interiors.’

"The groundwater that supplies many cities may be high in magnesium and calcium," said Helen Nguyen, a professor of civil engineering and co-author of the study. "When combined with other elements, they can form thick deposits of mineral scale that clog up engineered water systems. Because of this, water treatment plants add chemicals called polyphosphates to dissolve the minerals to keep the scale buildup under control." 




A recent study by co-author and civil and environmental engineering professor Wen-Tso Liu has shown that even with the addition of antimicrobial agents by water companies, the bacteria that grow on the mineral scale can reproduce to harmful levels in supplies that stagnate within indoor plumbing.
In a new study, a team of University of Illinois engineers shows that the addition of anti-scalant chemicals cause the biofilms to grow thicker and become softer.
The team measured the thickness and stiffness of lab-grown biofilms using magnetomotive optical coherence elastography - a tool used to measure the strength of cancer tissues. The analytical method, developed by Stephen Boppart, a professor of electrical and computer engineering and study co-author, allowed the team to quantify the effect that polyphosphate has on the strength of biofilms.
To reproduce what happens in engineered plumbing systems, the team used PVC pipe and groundwater from the Champaign-Urbana area source to grow biofilms. They set up multiple scenarios with and without added polyphosphates. All scenarios produced biofilms, but the system that used polyphosphates grew a much thicker and softer biofilms than the others, the researchers said.
Advertisement
A problem, according to researchers, is that some sort of anti-scalant chemical is required to maintain adequate water flow through pipes. "Of course, one solution could be to replace pipes once they become clogged with mineral buildup," Nguyen said. "But that would be a very expensive endeavor for public utilities and property owners in a country as large as the United States."
Advertisement
"Before this work, we did not have a good understanding of the relationship between the water chemistry and microbiome that exists in plumbing. This work has given us initial insight and tools to help determine what chemicals will work best and at what concentration," Nguyen said.
The team is moving ahead with related studies that look at ways to help physically remove biofilms while pipes remain in place and others that look at the effects of anti-corrosive chemicals on biofilms and water quality.
"We will not be able to control how long a drinking water user will allow water to stagnate, but we can work to understand how the chemicals we add to our water interact with biofilms."
Source-Eurekalert