About Careers Internship MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

Changes in Heart Activity Could be a Biomarker for Epilepsy in Chidlren

by Dr. Trupti Shirole on March 11, 2016 at 10:56 AM
Font : A-A+

 Changes in Heart Activity Could be a Biomarker for Epilepsy in Chidlren

Epilepsy is a central nervous system disorder that causes people to have recurring seizures. Doctors have long characterized epilepsy as a brain disorder, but researchers at Case Western Reserve University have found that part of the autonomic nervous system functions differently in epilepsy during the absence of seizures.

This connection to the involuntary division of the nervous system may have implications for diagnosing and treating the disease and understanding sudden unexpected death in epilepsy (SUDEP).

Advertisement


The research is published in the Journal of Neurophysiology.

"All the findings of our study on heart rate variability in epilepsy point to increased activity in the parasympathetic nervous system during sleep," said Roberto Fernandez Galan assistant professor of electrical engineering and computer science and senior author of the study. "But we don't know if this abnormality compensates for epilepsy, coincides with the disease or is part of the etiology."
Advertisement

Specifically, the parasympathetic - or 'rest-and-digest' - nervous system modulates breathing and slows the heart rate of sleeping children with epilepsy substantially more than in healthy children.

To their surprise, the researchers also found that several children who had been diagnosed as neurologically normal, but had similar strong modulation and low heart rates, were later diagnosed with epilepsy.

The discovery suggests that changes in the parasympathetic tone precede the onset of epilepsy in children.

The research group studied the electrocardiograms of 91 children and adolescents with generalized epilepsy, and 25 neurologically normal children during 30 minutes of stage 2, or light, sleep. No subjects were suffering from a seizure during these intervals.

The researchers found that respiratory sinus arrhythmia - the increase in heart rate during inhalation and decrease during exhalation - was more pronounced in patients with epilepsy, and that their heart rate also was significantly lower.

Those changes are consistent with increased firing of the vagus nerve in children with epilepsy, compared to those without, the researchers suggest. The vagus nerve is the main trunk of the parasympathetic nervous system. The more the vagus fires, the more it slows the heart, especially during exhalation.

The researchers found no difference in blood pressure between the two groups of children, indicating the sympathetic nervous system, which is responsible for fight-or-flight responses, is not involved.

All of the children in the study had electroencephalograms monitoring their brain activity during the 30-minute periods of sleep. There was no abnormal activity found there, either.

The researchers said that by further defining differences in the respiratory sinus arrhythmia between children with and without epileptics, they may be able to identify thresholds, or biomarkers, to diagnose those with epilepsy or at risk of developing the disease. The findings also raise the possibility that medicines that help control the autonomic nervous system may help control epilepsy.

Other researchers, including Kenneth Loparo, chair of the Department of Electrical Engineering and Computer Science at Case Western Reserve, and Samden Lhatoo, professor of neurology at Case Western Reserve School of Medicine, have shown that autonomic dysfunction may play a role in SUDEP, the most common cause of death among people with uncontrollable epilepsy.

"This may be a key contributing factor," Sivakumar said. "The heart rate and breathing decline dramatically after a seizure. If they are already low, and are then lowered further, that may cause a child to go a minute or more without a breath or pulse."

Severe epilepsy in adults is sometimes treated by implanting an electrode to stimulate the vagus nerve, which, in turn, stimulates the brain. The treatment provides some relief for about 30% of patients, but other patients get no benefit and some find that their conditions worsen.

"In light of our new findings, we call for caution," Galan said. "The implant may be slowing the heart during sleep even more."

Source: Eurekalert
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
What's New on Medindia
Alarming Cesarean Section Trends in India - Convenience or Compulsion of Corporate Healthcare
Quiz on Low-Calorie Diet for Diabetes
World Heart Day in 2022- Use Heart for Every Heart
View all
Recommended Reading
News Archive
Date
Category
Advertisement
News Category

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Epilepsy Febrile Fits / Febrile Convulsions Heart Healthy Heart Amyotrophic Lateral Sclerosis (ALS) Statins Mitral Valve Prolapse Aortic Valve Stenosis Reye’s Syndrome Convulsions 

Most Popular on Medindia

Turmeric Powder - Health Benefits, Uses & Side Effects A-Z Drug Brands in India Daily Calorie Requirements Drug Interaction Checker Post-Nasal Drip Hearing Loss Calculator Nutam (400mg) (Piracetam) Calculate Ideal Weight for Infants Blood - Sugar Chart Noscaphene (Noscapine)
This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use
×

Changes in Heart Activity Could be a Biomarker for Epilepsy in Chidlren Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests