About Careers MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

Carnitine Supplement may Improve Survival Rates of Children With Heart Defects

by Kathy Jones on May 12, 2013 at 11:35 PM
Font : A-A+

 Carnitine Supplement may Improve Survival Rates of Children With Heart Defects

A new study has found that a common nutritional supplement can help improve the survival rates of babies born with heart defects.

Carnitine, a compound that helps transport fat inside the cell powerhouse where it can be used for energy production, is currently used for purposes ranging from weight loss to chest pain.

Advertisement

New research shows it appears to normalize the blood vessel dysfunction that can accompany congenital heart defects and linger even after corrective surgery, said Dr. Stephen M. Black, cell and molecular physiologist at the Vascular Biology Center at the Medical College of Georgia at Georgia Regents University.

"My hope is this is going to have a major, major impact on survival of babies," Black said. About half the babies born with heart defects have excessive, continuous high pressure on their lungs from misdirected blood flow. Early surgery can prevent full-blown pulmonary vascular disease, but scientists are finding more subtle disruptions in the signaling inside blood vessels walls that can be problematic - even deadly - up to 72 hours after surgery.
Advertisement

The good news is the changes are reversible and that carnitine speeds recovery and can even prevent the damage in a lamb model of these human heart defects, according to studies published in the journal Pediatric Research.

Normally, most blood flow bypasses the lungs in utero when the placenta provides blood and oxygen for the baby. Baby's first breaths naturally expand the lungs and blood vessels, activating a process inside the lining of vessels that enables them to accommodate the initial blood surge, then reduce pressure quickly, dramatically and permanently.

This natural transition doesn't occur when heart defects misdirect blood flow. "It's kind of like a chronic fetal-to-newborn transition," said Black, the study's corresponding author. Lungs get pounded with about three times the normal flow and, even when surgeries are done as early as possible to repair the defect, correct blood flow and protect the lungs, the 20 percent death rates from acute pulmonary hypertension have remained unchanged for a decade. "That's 1 in 5 kid (with this condition)," Black said.

Left unchecked, the barrage thickens blood vessels, making them unresponsive, much like those of an elderly individual who has lived for years with uncontrolled high blood pressure. The comparatively brief periods of pounding these babies experience impairs the ability of the endothelial cells, which line blood vessels, to produce nitric oxide, a major dilator of blood vessels.

The shear force disrupts carnitine homeostasis, weakens the mitochondria (the cell powerhouse) and impairs nitric oxide production. To make bad matters worse, the precursor to nitric oxide instead makes more peroxynitrite, prompting endothelial cells to grow and thickening blood vessels. Black was also corresponding author of a recent study in the Journal of Biological Chemistry that showed peroxynitrite does this by turning on the cell survival protein kinase Akt1.

The new study indicates that even without fixing the heart defect, high daily doses of carnitine in the first four weeks of life can prevent endothelial dysfunction. In fact, the laboratory lambs' ability to make nitric oxide is preserved even without the benefit of heart surgery and the responses to the chemical activity that enables blood vessel dilation is normalized, Black said.

Study co-author Dr. Jeffrey Fineman, a whole-animal physiologist and physician at the University of California, San Francisco, developed the model, a lamb whose four-chambered heart is very similar to humans. In utero surgery that misdirects too much blood to the lungs, means that, like children, the lambs are born with the defect.

Black is now working with Fineman, who is pursuing additional funding to resolve questions such as the optimal dosage and timing for giving carnitine. "Do you want to give it for six weeks when you only have to give it for six hours?" Black said. The researchers also plan to examine carnitine homeostasis in the blood of children with heart defects to see if it's disrupted. If it is, they plan to start clinical trials.

About 1 in 125 babies are born with a heart defect each year in the United States, according to the March of Dimes. The research was funded by the National Institutes of Health, the Foundation Leducq and the American Heart Association.



Source: Eurekalert
Advertisement

Advertisement
Advertisement

Recommended Reading

Latest Heart Disease News

Monday: The Day for Deadly Heart Attacks?
The start of the week is when most fatal heart attacks occur, according to a study.
Delay in Seeking Care Results in 55% of Cardiac Deaths in India
The first community-based study, published in the journal Lancet, says that delays in seeking care account for nearly 55% of the reported cardiac and stroke deaths in India.
The Surprising Impact of Quit Smoking: 36% Lower Cardiovascular Risk
The study emphasizes the existing proof on the heart disease risks of tobacco smoking and the urgent need to stop smoking among cancer survivors.
 Discovering Genetic Risks for Type of Heart Attack Largely Affecting Younger Women
New study findings provide novel pathophysiological insights involving blood vessel integrity and tissue-mediated coagulation in a type of heart attack in young women.
Unlocking the Crystal Ball: Heart Failure Subtypes Helps Forecast Future Risks!
Recent study identifies five heart failure subtypes with the potential for individual patient risk prediction.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
×

Carnitine Supplement may Improve Survival Rates of Children With Heart Defects Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests