A complex mathematical method to measure electrical communications within the heart that can successfully predict the effectiveness of catheter ablation.

TOP INSIGHT
When drugs aren't effective for treating atrial fibrillation, cardiologists may use a procedure called catheter ablation to cauterize, or burn, the heart tissue that is the source of the electrical misfire.
Hiroshi Ashikaga, assistant professor of medicine and biomedical engineering at Johns Hopkins University School of Medicine, says that the success rate for atrial fibrillation patients twelve months after the procedure is 60 to 80 percent for ideal candidates with intermittent irregular heartbeats. But for patients who have chronic and persistent irregular heartbeats, success rates are much lower.
"This means that 20 to 40 percent of patients have to undergo a second, or even third, long procedure; rates no one is happy about," Ashikaga says. "Our study sought to create an accurate predictor and measure of success and we showed that if the procedure improved electrical communication in the heart immediately following catheter ablation, then it can be a read-out for longer term success." Ashikaga published the results of his study on July 5 in the open access journal PLOS ONE.
Ashikaga and his team used a basket-shaped catheter with 64 electrode sensors to measure the heart’s electrical communication just before and right after the procedure, and again at six months in 22 patients with an average age of about 64 years treated at the Johns Hopkins Hospital. Seventy-eight percent of patients in the study were male and all patients had persistent atrial fibrillation.
To quantify the health of the heart’s complex electrical communication system, Ashikaga’s team measured the strength of the communication between all of the different pairs of points that the 64-node catheter can monitor. The heart’s structure of communication can be described as a small-world network. A small-world network is a structure that Ashigaka describes as somewhere between a regular network and a random network, with a regular network imagined as a circle of 64 people holding hands and being friends only with their neighbors, and a random network imagined as that circle of people having random friendships throughout the circle, irrespective of where they’re standing.
The opposite of a regular network is a random network, with many arbitrary connections between points. In between a regular and random network is a small-world network, a combination of regular and random connections that creates an efficient and robust system, "meaning that if one connection is broken, there’s still a pathway for communication," Ashikaga explains.
Ashikaga cautions that larger-scale clinical trials are needed before the measurement can be recommended for wider use.
Source-Eurekalert
MEDINDIA




Email





