iPANDA-A Novel Approach for Precision Medicine Based on Gene Expression Data

by Dr. Meenakshy Varier on  November 18, 2016 at 5:15 PM Research News
RSS Email Print This Page Comment
The Insilico Medicine announced the publication of its 'in silico Pathway Activation Network Decomposition Analysis (iPANDA)', a novel approach for analyzing signaling and metabolic pathway perturbation states using gene expression data, in Nature Communications.
 iPANDA-A Novel Approach for Precision Medicine Based on Gene Expression Data
iPANDA-A Novel Approach for Precision Medicine Based on Gene Expression Data

iPANDA is a scalable robust method for rapid biomarker development using gene expression data.

In the present work Insilico Medicine team collaborated with researchers from the Johns Hopkins University, Albert Einstein College of Medicine, Boston University, Novartis, Nestle and BioTime.

They demonstrated that iPANDA provides significant noise reduction in transcriptomic data and identifies highly robust sets of biologically relevant pathway signatures for breast cancer patients according to their sensitivity to neoadjuvant therapy.

"In this paper we describe one of our most sensitive and biologically-relevant approaches for integrating and analyzing gene expression data and present its application for stratifying responders and non-responders to targeted chemotherapy."said Ivan Ozerov, PhD, head of senolytics group at Insilico Medicine and the lead author on the paper.

"However, the applications of this method stretch beyond precision medicine and we use it primarily for artificial intelligence and aging research. My team and many of our collaborators also use it to develop targetable tissue-specific signatures of senescence, cross-species gene expression analysis ", Ozerov added.

"iPANDA is a universal tool, which allows us to perform in-depth analysis of the effects of external perturbations on the activation of signaling pathways and how it affects the downstream targets. ", said Ksenia Lezhnina, head of the "Nutriomi" personalized omics-informed nutrition group at Insilico Medicine and the co-author of the paper.

The iPANDA method combines pre-calculated gene co-expression data with gene importance factors based on the degree of differential gene expression and pathway topology decomposition for obtaining pathway activation scores.

While modern pathway-based methods often fail to provide stable pathway signatures of a specific phenotype or disease condition, iPANDA produces highly consistent sets of biologically relevant biomarkers acquired on multiple transcriptomic data sets.

Signalling pathway activation scoring using iPANDA will likely help reduce the dimensionality of expression data without losing biological relevance and may be used as an input to rapidly developing deep learning methods especially for drug discovery applications.

Using iPANDA values as an input data seems to be a particularly high-potential approach to obtaining reproducible results when analysing transcriptomic data from multiple sources.

Therefore, while there is no single preferential approach for interpreting gene expression results, the iPANDA method of transcriptomic data analysis on the signaling pathway level may not only be useful for discrimination between various biological or clinical conditions, but may aid in identifying functional categories or pathways that may be relevant as possible therapeutic targets.

"Gene expression profiles generated on microarray equipment is one of the most abundant biological data types with hundreds of thousands of published experiments. A method which allows scientists to make better use of this data, perform quality control and integrate it with RNASeq and protein expression data is extremely important", said Charles Cantor, PhD, the co-founder and former CSO of Sequenom, former CSO of the Human Genome Project from the DOE and advisor to Insilico Medicine, a co-author of the publication.

The iPANDA algorithm is a very sensitive pathway perturbation analysis method, which allows for granular comparison of the differentiation states of human cell and tissues using highly sparse gene expression data.

It also serves as a biologically-relevant dimensionality reduction and feature selection tool for training the deep neural networks.

Source: Medindia

Post your Comments

Comments should be on the topic and should not be abusive. The editorial team reserves the right to review and moderate the comments posted on the site.
* Your comment can be maximum of 2500 characters
Notify me when reply is posted
I agree to the terms and conditions

More News on:

DNA Finger Printing Drug Toxicity Weaver Syndrome 

News A - Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

News Search

Medindia Newsletters

Subscribe to our Free Newsletters!

Terms & Conditions and Privacy Policy.

Stay Connected

  • Available on the Android Market
  • Available on the App Store

Facebook

News Category

News Archive