Now people with cardiovascular disease will gain from a potent new molecular imaging tool to spot disease in the main arteries supplying oxygen to the heart, posit researchers.

The World Health Organization considers cardiovascular disease the number one cause of death and disability across the globe. Coronary artery disease is just one of a range of these diseases that can cause serious problems, including heart attack, if left untreated.
In two studies presented at the meeting, investigators examined quantitative imaging data to determine the true extent of coronary artery disease. In one study, researchers tested a molecular imaging method called myocardial perfusion imaging, also known as a stress test, conducted with positron emission tomography (PET). They then measured the CFR and calculated the precise dilation of blood vessels at rest and under stress. The objective of the study was to compare this technique's ability to predict arterial disease to a more conventional imaging method called angiography. In the other study, researchers used a PET stress test and measured CFR to determine whether age is always a risk factor for arterial disease.
"The quantification of CFR with molecular imaging provides a substantial advantage for unmasking coronary artery disease, even in patients who would otherwise be considered healthy with normal myocardial perfusion imaging," says Michael Fiechter, M.D., lead investigator of one study in cardiac imaging at the department of radiology for University Hospital Zurich, Zurich, Switzerland.
Measuring CFR goes beyond traditional myocardial perfusion imaging, which is based on visual interpretation of the differences between blood flow at rest and under stress, and instead actually quantifies coronary artery disease using imaging data acquired during scanning. The molecular imaging technique is made possible with PET, which uses injected imaging probes that emit signals picked up by a specialized scanner. Coronary artery disease is often evaluated using angiography, an X-ray procedure that involves catheterization and the injection of a dye into the coronary arteries in order to image blood flow and structure of the vessels, and echocardiography, which uses sound waves to image the heart.
"Although different studies revealed a prognostic value of CFR, this study is the first that systematically assessed the diagnostic value of CFR against invasive coronary angiography as a standard of reference for detection of coronary artery disease," says Philipp Kaufmann, M.D., a lead author of one of the studies in the department of radiology and cardiac imaging at University Hospital Zurich, Zurich, Switzerland.
Advertisement
In a separate study of 704 patients over the age of 75, researchers using similar methods discovered that age was not necessarily a risk factor for developing coronary artery disease, as was once thought.
Advertisement
Results of the research revealed that myocardial perfusion imaging with PET and either Rb-82 or N-13-ammonia with added quantitative CFR measurements significantly improved sensitivity and diagnostic value of stress testing over myocardial perfusion imaging alone. The evidence also shows that this molecular imaging technique is extremely accurate and may provide more information for identifying coronary vascular disease and for exploring why some people develop the disease and others do not.
"The primary message of our study is that aging does not always imply decline in vascular function and that the many people with preserved vascular function have far better prognosis— about half the risk of dying from heart disease," says Murthy.
Source-Eurekalert