About My Health Careers Internship MedBlogs Contact us

UCSF Researchers Develop New Strategy to Target Protein Linked With Development of Cancer

by Kathy Jones on November 23, 2013 at 8:41 PM
Font : A-A+

 UCSF Researchers Develop New Strategy to Target Protein Linked With Development of Cancer

Researchers at UC San Francisco have managed to develop new molecules that target the mutant form of a protein, called ras which is known to drive development of cancers, without affecting the normal form.

When tested on human lung cancer cells grown in culture, the molecules efficiently killed the ras-driven cancer cells.


Ras is abnormal in about three out of ten cancers. It is the most commonly activated protein in lung tumors, the leading cancer killer in the United States, as well as in colon cancers, the third leading cause of cancer death. Ras also is mutated in a vast majority of pancreatic cancers, which are almost always fatal, and the fourth leading cause of cancer death.

The protein has long been viewed as an obvious target for drug treatment in cancer, but since the 1980s drug candidates developed by several companies to block ras function have failed in clinical trials.

The UCSF research group, led by Kevan Shokat, PhD, a Howard Hughes Medical Institute investigator and chair of the UCSF Department of Cellular and Molecular Pharmacology, designed small molecules that attach irreversibly to ras within a previously unknown, normally short-lived pocket that appears on the mutant protein as it changes shape. Their work was published online November 20, 2013 in the journal Nature.

Many experienced pharmaceutical chemists had come to regard ras as undruggable, Shokat said. Among the failed strategies were conventional approaches aimed at designing small molecules to compete with the molecule called GTP, which naturally activates ras within the cell. GTP binds so tightly to ras that it is difficult for any drug to compete by binding instead and blocking activation.

But given its importance and the fact that few new cancer targets have been identified recently, drug companies have begun giving ras research another chance.

In its normal form, ras plays a key role in driving cell growth. When it is mutated, and thus activated in an uncontrolled manner, it triggers a chain of events within a tumor cell that includes abnormal activation or inhibition of other genes that then promote cancer. Some of the proteins encoded by these downstream genes have been targeted by promising treatments now in clinical trials. But tumors with abnormal ras often do not respond well to these single therapies, pushing researchers to evaluate various combinations of drugs.

The latest achievement further justifies a renewed interest in ras in the cancer research community and pharmaceutical industry, according to Frank McCormick, PhD, FRS, an expert on cancer biochemistry, the founder of Onyx Pharmaceuticals, director of the Helen Diller Family Comprehensive Cancer Center at UCSF, and now a leader of a new, $10-million-per-year initiative launched this year by the National Cancer Institutes to target ras.

"Cancers driven by ras are the most difficult to treat and are excluded from other targeted therapies, as they fail to respond," McCormick said. "Dr. Shokat and his team have taken a brilliantly innovative approach to this tough target, and, for the first time, have developed a strategy for targeting a mutant form of ras with exquisite specificity."

Two percent of all cancers have the specific mutation targeted in the study, including 7 percent of all lung cancers, according to Shokat. "We are confident that our findings can serve as the starting point for drug-discovery efforts targeting this specific mutation, and eventually other mutations," he said.

Additional Background

A mutated ras gene is the quintessential human "oncogene," one in which small alterations in the gene's DNA change its genetic blueprint, and thus the shape and function of the protein it encodes, or the amount of protein produced. The change converts the protein from one that helps guide normal growth and development into one that drives abnormal growth.

In some cases, a mutation that switches out just one of the DNA building blocks sequenced together to make a gene can alter the function of the resultant protein and lead to cancer.

Scores of oncogenes now are known, but, according to Shokat, "Ras was actually the first human oncogene found to be activated by a single point mutation. People have tried to drug every part of ras and looked at every nook and cranny on it and screened a million compounds and never found anything that inhibits it well."

Shokat and colleagues engineered molecules that inhibit the activity of ras in which a single point mutation caused a change in one specific amino acid among the hundreds that link and fold to determine the protein's form and function. The drug-like molecules depend on binding to a cysteine amino acid that is abnormally present near the newly identified pocket in the mutant ras.

Shokat is using the best ras inhibitor to come out of the study as a template for further drug development. UCSF has applied for a patent covering this lead compound, and licensed the intellectual property to Araxes Pharma, a new company co-founded by Shokat to advance development of a drug to target ras. The start-up has formed a partnership with Janssen Biotech, a subsidiary of Johnson & Johnson.

Because the molecules Shokat's research group created block only a mutant, cancer-driving form of ras, and not the normal ras found in the cells of healthy tissue, a drug developed according to this approach should have great specificity in targeting cancer while sparing normal tissue, Shokat said.

Source: Eurekalert

News A-Z
News Category
What's New on Medindia
Breast Cancer Awareness Month 2021 - It's time to RISE
First-Ever Successful Pig-To-Human Kidney Transplantation
World Osteoporosis Day 2021 -
View all

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Cancer and Homeopathy Cancer Facts Cancer Tattoos A Body Art Magical Millets for Your Health Diet and Nutrition Tips for Athletes Nutrition IQ 

Recommended Reading
Carcinoid Tumors
Carcinoid tumors is a benign tumor that results in carcinoid syndrome. Only 8 to 10% of all ......
Pheochromocytoma is a rare tumor of the adrenal glands that secretes the catecholamines, adrenaline ...
Brain Tumor
Brain tumors are the abnormal growth of brain cells that may be benign or metastatic. Brain tumors ....
Tumor Markers For Cancer Diagnosis and Prognosis
An ideal tumor marker for a cancer should be specific to that cancer and not generate false ......
Diet and Nutrition Tips for Athletes
Athletes can be physically fit by consuming a well balanced nutritious diet, which keeps them mental...
Magical Millets for Your Health
Millets are far more nutrient dense than wheat and rice. They are inexpensive and tasty too. Nutriti...
Tattoos A Body Art
Tattoos are a rage among college students who sport it for the ‘cool dude’ or ‘cool babe’ look...

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2021

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use