In order to image other organs in living mice two-photon imaging has been utilised. However the heart has never been in the picture.

One advantage of two-photon microscopy is the ability to penetrate deep into tissue, allowing scientists to image cells in the heart tissue.
Using the technique in mice that had undergone heart transplants or had a blood flow to the heart temporarily interrupted, the researchers saw that within minutes of restoring blood flow, specialized white blood cells, called neutrophils, rushed into the heart. (To see a video of neutrophils, shown in green, swarming into the beating heart of a mouse after a heart transplant, click here.)
Neutrophils are known to be a key driver of inflammation but scientists had never seen the trafficking of immune cells as they move from the circulation into the heart muscle, where the cells formed large clusters that cause tissue damage.
In addition, by blocking neutrophils from blood vessel walls, the researchers could markedly reduce the movement of these cells into the heart, preventing further injury.
Kreisel, Li and their colleagues collaborated with co-senior author Mark Miller, PhD, an assistant professor of pathology and immunology, who pioneered the use of two-photon microscopy for studying the trafficking of white blood cells in living mice. Together, they developed a way to stabilize the beating heart so they could obtain high-quality images of immune cell trafficking.
"Each organ seems to have its own requirements for signaling and attracting inflammatory cells," says Kreisel, who also is an associate professor of surgery. "It is as if each organ has its own zip code. Now, we have the ability to identify all the cells and signaling molecules that play a part in heart inflammation and can block particular pathways to see if we can prevent organ damage."
MEDINDIA



Email









