About Careers Internship MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

Targeted Therapy Kills Gene Vulnerable Cancer Cells Effectively

by Angela Mohan on November 23, 2020 at 4:44 PM
Targeted Therapy Kills Gene Vulnerable Cancer Cells Effectively

Small-molecule enolase inhibitor found to be effective in killing brain cancer cells that were missing ENO1, one of two genes encoding the enolase enzyme, as per the study by the team of researchers at the University of Texas MD Anderson Cancer Center, published in Nature Metabolism.

The new study provide the concept of collateral lethality, in which a vital protein is lost through genetic deletion as a bystander near a tumor suppressor gene, and a redundant protein is blocked therapeutically.

Advertisement


"Collateral lethality could expand the scope of precision oncology beyond activated oncogenes, and allow targeting of genomic deletions, largely considered un-actionable," said corresponding author Florian Muller, Ph.D., assistant professor of Cancer Systems Imaging and Neuro-Oncology.

"Our work provides proof of principle that this approach can actually work with a drug in animal models."

Enolase encoding genes ENO1 and ENO2, encode slightly different. Targeting only ENO2 is attractive as it allows for the selective treatment of cancer cells missing ENO1.
Advertisement

The research team worked to generate an enolase inhibitor, called HEX, that targets ENO2 over ENO1. Prodrug POMHEX was developed, which is biologically inactive until it is metabolized into HEX within cells.

Treatment with POMHEX blocked glycolysis, inhibited cell growth and stimulated cell death. Conversely, treatment of cells with normal ENO1 showed minimal effects. Further, in animal models of ENO1-deficient tumors, both HEX and POMHEX treatment was well- tolerated and effectively blocked tumor growth relative to controls, with some instances of complete tumor eradication.

Taking the work one step further, the team demonstrated that the best effective dose could be safely given in multiple models, suggesting favorable future translation to the clinical studies.

"We were encouraged by the promising preclinical activity of these novel enolase inhibitors and that the safety profile extends to higher models. While there could be further refinements, I am optimistic that even HEX would show significant clinical activity against ENO1-deleted cancers," Muller said.

ENO1 deletions also occur in liver cancer, bile duct cancer and large-cell neuroendocrine lung cancers, all of which share poor prognosis and limited treatment options, Muller explained. Thus, once an optimal therapy candidate has been developed, there is potential to evaluate the ENO2 inhibitor in treating patients with multiple cancer types.



Source: Medindia
Font : A-A+

Advertisement

Advertisement
Advertisement

Recommended Readings

Latest Cancer News

Personalized Vaccine and T Cell Therapy for Ovarian Cancer Patients
The combination of the personalized cancer vaccine with ACT led to ovarian cancer control in few patients within a span of three months, stated study results.
Kinase-Targeted Therapy Revolutionizes Colorectal Cancer Care
Uncovering key kinases in tumor growth and invasion is crucial for improving targeted therapies in advanced-stage colorectal cancer.
Novel Photo-Oxidation Therapy Holds Promise for Anticancer Treatment
The study findings validate metal-enhanced photo-oxidation for future metal-based anticancer drugs.
Mutations in 11 Genes Linked to Aggressive Prostate Cancer
Mutations in 11 genes are linked to aggressive forms of prostate cancer, which may present novel therapeutic and therapy options.
Link Between Poor Oral Health and Head & Neck Cancer Survival Uncovered
Improved oral health, as indicated by the count of natural teeth and dental appointments preceding the diagnosis, correlated with enhanced head and neck cancer survival rates.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
MediBotMediBot
Greetings! How can I assist you?MediBot
×

Targeted Therapy Kills Gene Vulnerable Cancer Cells Effectively Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests