
A synthetic peptide carrier developed by Mayo Clinic researchers was able to transfer drugs through the blood-brain barrier, emerging as a potential vehicle for delivering brain cancer chemotherapy drugs and other neurological medications to the brain, a new study published in the journal PLOS ONE reveals.
"Not only have we shown that we can transport eight different molecules, we think this method will be less disruptive or invasive because it mimics a normal physiological process," says Mayo Clinic neuroscientist Gobinda Sarkar, Ph.D., the corresponding author of the study. The researchers are able to transport the drugs without modifying any of the molecules involved. They say this development will aid in evaluation of potential new drugs for brain cancer.
The blood-brain barrier is meant to protect the brain from numerous undesirable chemicals circulating in the body, but it also obstructs access for treatment of brain tumors and other conditions. Too often the only recourse is invasive, which often limits a drug's effectiveness or causes irreversible damage to an already damaged brain. Nearly all of the drugs that could potentially help are too large to normally pass through the barrier. Additionally, other methods may damage the vascular system.
"We know that some chemotherapeutic agents can kill brain tumor cells when they are outside the brain (as in a laboratory test). But because the agents cannot cross the blood-brain barrier, they are not able to kill brain tumor cells inside the brain. With the peptide carrier, these agents can now get into the brain and potentially kill the tumor cells," says Mayo neurology researcher Robert Jenkins, M.D., Ph.D., senior author of the study.
The researchers say their method, which has been successfully demonstrated in mice, meets three of five requirements for a usable therapy: It's feasible as a repeated procedure; it should be relatively easy to introduce into medical practice; and it would work for any size or location of brain tumor. More research will need to be done to prove effectiveness and determine any adverse effects.
Source: Eurekalert
Advertisement
|
Recommended Readings
Latest Drug News




