by Rajshri on  November 15, 2009 at 10:02 AM Child Health News
 Scientists Find Why  Dyslexic  Kids Face Difficulties in  Distinguishing  Speech from Noise
The mechanism behind why children with dyslexia often have difficulty hearing someone talk in a noisy room has been discovered in a new study.

It has shown that dyslexic kids have a deficit in a brain mechanism involved in the perception of speech in a noisy environment.

The study provides the first direct evidence that the human auditory brainstem exhibits remarkable moment-to-moment plasticity and undergoes a fine-tuning that is strongly linked to noise exclusion.

Most people have little trouble carrying on a conversation with a friend in a noisy restaurant thanks to the highly adaptive auditory system, which manages to focus in on the predictable, repeating pitch of the friend's voice and effectively tune out the random, fluctuating background noise.

Although it may be a routine occurrence, exactly how the nervous system manages to accomplish this feat is still a mystery.

Senior study author Dr. Nina Kraus, who directs the Auditory Neuroscience Laboratory at Northwestern University, and colleagues measured auditory brainstem responses to a speech syllable presented in a repetitive or variable context in children with and without developmental dyslexia.

The brainstem is the first part of the brain that processes auditory information and relays that information to higher brain centers.

Children without dyslexia showed enhanced brainstem representation of features related to voice pitch in the repetitive context, relative to the variable context.

On the other hand, brainstem encoding in the children with dyslexia did not adapt well to the repeating auditory signal.

The researchers went on to show that the extent of context-dependent encoding in the auditory brainstem was positively correlated with the successful perception of speech in noise.

"The ability to sharpen representation of repeating elements is crucial to speech perception in noise, since it allows superior tagging of voice pitch, an important cue for segregating sound streams in background noise. The disruption of this mechanism contributes to a critical deficit in noise exclusion, a common symptom in developmental dyslexia," Dr. Kraus said.

The study has been published by Cell Press in the November 12 issue of the journal Neuron.

Source: ANI

Most Popular on Medindia