Study says a regulatory protein best known for its role in a rare genetic brain disorder also may play a critical role in cocaine addiction

"This discovery, using an animal model of addiction, has exposed an important effect of cocaine at the molecular level that could prove key to understanding compulsive drug taking," said Dr. Nora D. Volkow, director of NIDA. "It should open up new avenues of research on the causes and ways to counter the behavioral changes linked to addiction in humans."
This is the second time this year that a critical factor related to cocaine self-administration in rodents has been identified. In a study published in July in the journal Nature, Scripps researchers identified regulatory molecule miRNA-212 as playing a key role in cocaine intake. However, MeCP2 increased motivation for cocaine, whereas miRNA-212 had the opposite effect, suggesting that the latter plays a protective role against drug seeking.
In the current study, researchers discovered that the brain's balance between MeCP2 and miRNA-212 ultimately regulates cocaine intake. When the balance shifts toward MeCP2, cocaine intake increases. When the balance shifts toward miRNA-212, cocaine intake decreases. What determines the balance is not yet understood, however, and will be the focus of future research.
"This study represents another piece in the puzzle of determining vulnerability to cocaine addiction," said Paul J. Kenny, senior author on the study and an associate professor at Scripps. "If we can continue putting the pieces together, we may be able to determine whether there are viable treatments for this condition."
MEDINDIA



Email








