About My Health Careers Internship MedBlogs Contact us
Medindia LOGIN REGISTER
Advertisement

Researchers Uncover Role of "Master Regulators" in Gene Mutations and Disease

by Rukmani Krishna on October 17, 2013 at 1:57 AM
Font : A-A+

 Researchers Uncover Role of

A new way to parse and understand how special proteins called "master regulators" read the genome, and consequently turn genes on and off was developed by researchers at the University of California, San Diego School of Medicine.

Writing in the October 13, 2013 Advance Online Publication of Nature, the scientists say their approach could make it quicker and easier to identify specific gene mutations associated with increased disease risk - an essential step toward developing future targeted treatments, preventions and cures for conditions ranging from diabetes to neurodegenerative disease.

Advertisement

"Given the emerging ability to sequence the genomes of individual patients, a major goal is to be able to interpret that DNA sequence with respect to disease risk. What diseases is a person genetically predisposed to?" said principal investigator Christopher Glass, MD, PhD, a professor in the departments of Medicine and Cellular and Molecular Medicine at UC San Diego.

"Mutations that occur in protein-coding regions of the genome are relatively straight forward, but most mutations associated with disease risk actually occur in regions of the genome that do not code for proteins," said Glass. "A central challenge has been developing a strategy that assesses the potential functional impact of these non-coding mutations. This paper lays the foundation for doing so by examining how natural genetic variation alters the function of genomic regions controlling gene expression in a cell specific-manner."
Advertisement

Cells use hundreds of different proteins called transcription factors to "read" the genome, employing those instructions to turn genes on and off. These factors tend to be bound close together on the genome, forming functional units called "enhancers." Glass and colleagues hypothesized that while each cell has tens of thousands of enhancers consisting of myriad combinations of factors, most enhancers are established by just a handful of special transcription factors called "master regulators." These master regulators play crucial, even disproportional, roles in defining each cell''s identity and function, such as whether it will be a muscle, skin or heart cell.

"Our main idea was that the binding of these master regulators is necessary for the co-binding of the other transcription factors that together enable enhancers to regulate the expression of nearby genes," Glass said.

The scientists tested and validated their hypothesis by looking at the effects of approximately 4 million DNA sequence differences affecting master regulators in macrophage cells in two strains of mice. Macrophages are a type of immune response cell. They found that DNA sequence mutations deciphered by master regulators not only affected how they bound to the genome, but also impacted neighboring transcription factors needed to make functional enhancers.

The findings have practical importance for scientists and doctors investigating the genetic underpinnings of disease, said Glass. "Without actual knowledge of where the master regulator binds, there is relatively little predictive value of the DNA sequence for non-coding variants. Our work shows that by collecting a focused set of data for the master regulators of a particular cell type, one can greatly reduce the 'search space'' of the genome in a particular cell type that would be susceptible to the effects of mutations. This allows prioritization of mutations for subsequent analysis, which can lead to new discoveries and real-world benefits."

Co-authors include Sven Heinz, Casey Romanoski, Karmel A. Allison, Department of Cellular and Molecular Medicine, UCSD; Christopher Benner, Department of Cellular and Molecular Medicine, UCSD, Salk Institute for Biological Studies and San Diego Center for Systems Biology; Minna U. Kiakkonen, Department of Cellular and Molecular Medicine, UCSD and University of Eastern Finland and Luz D. Orozco, UCLA.

Funding support came from National Institutes of Health grants DK091183, CA17390 and DK063491, a Foundation Leducq Career Development award, the Academy of Finland, Finnish Foundation for Cardiovascular Research, Finnish Cultural Foundation, North Savo Regional Fund and the American Heart Association.

Source: Newswise
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Advertisement
News Category
What's New on Medindia
January is the Thyroid Awareness Month in 2022
Menstrual Disorders
Coffee May Help You Fight Endometrial Cancer
View all

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
DNA Finger Printing Cystic Fibrosis McArdle Disease Weaver Syndrome Inherited Breast Cancer Syndromes Von Hippel-Lindau Disease / Rare Genetic Disorder How Do Viruses Mutate and Why Does it Matter? 

Recommended Reading
Optogenetics Shows Promise in Treatment of Obsessive-compulsive Disorders
Researchers managed to re-establish normal behaviour in mice by applying light stimulation to ......
Researchers Make Progress in Linking Some Forms of Epilepsy to Genetics
Certain patients with a rare type of epilepsy called epilepsy aphasia have mutations in the same ......
Cystic Fibrosis
Cystic fibrosis is a genetic disease involving the mucus and sweat glands and the medical world has ...
DNA Finger Printing
DNA fingerprinting is a technique which helps forensic scientists and legal experts solve crimes, id...
How Do Viruses Mutate and Why Does it Matter?
Mutations are the sudden changes that occur in genetic materials. They occur as a part of evolution ...
Inherited Breast Cancer Syndromes
Inherited breast cancers are caused due to mutations in genes that increase the risk of breast cance...
McArdle Disease
McArdle disease is a genetic disorder in which the body cannot breakdown glycogen in the muscles. It...
Von Hippel-Lindau Disease / Rare Genetic Disorder
Von Hippel-Lindau Disease (VHL) or Von Hippel-Lindau Syndrome is a rare genetic disorder caused by a...
Weaver Syndrome
Weaver syndrome is a genetic disorder in which children show accelerated bone growth, advanced bone ...

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2022

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use
open close
CONSULT A DOCTOR
I have read and I do accept terms of use - Telemedicine

Advantage Medindia: FREE subscription for 'Personalised Health & Wellness website with consultation' (Value Rs.300/-)