About My Health Careers Internship MedBlogs Contact us
Medindia LOGIN REGISTER
Advertisement

Researchers Discover Lab-created Human Brain Cells Grow in Mice

by Bidita Debnath on May 7, 2013 at 11:58 PM
Font : A-A+

 Researchers Discover Lab-created Human Brain Cells Grow in Mice

A key type of human brain cell developed in the laboratory grows seamlessly when transplanted into the brains of mice, discoveres UC San Francisco researchers.

The breakthrough raises hope that these cells might one day be used to treat people with Parkinson's disease, epilepsy, and possibly even Alzheimer's disease, as well as and complications of spinal cord injury such as chronic pain and spasticity.

Advertisement

"We think this one type of cell may be useful in treating several types of neurodevelopmental and neurodegenerative disorders in a targeted way," said Arnold Kriegstein, MD, PhD, director of the Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research at UCSF and co-lead author on the paper.

The researchers generated and transplanted a type of human nerve-cell progenitor called the medial ganglionic eminence (MGE) cell.

Development of these human MGE cells within the mouse brain mimics what occurs in human development, they said.
Advertisement

Kriegstein sees MGE cells as a potential treatment to better control nerve circuits that become overactive in certain neurological disorders. Unlike other neural stem cells that can form many cell types - and that may potentially be less controllable as a consequence - most MGE cells are restricted to producing a type of cell called an interneuron. Interneurons integrate into the brain and provide controlled inhibition to balance the activity of nerve circuits.

To generate MGE cells in the lab, the researchers reliably directed the differentiation of human pluripotent stem cells - either human embryonic stem cells or induced pluripotent stem cells derived from human skin. These two kinds of stem cells have virtually unlimited potential to become any human cell type.

When transplanted into a strain of mice that does not reject human tissue, the human MGE-like cells survived within the rodent forebrain, integrated into the brain by forming connections with rodent nerve cells, and matured into specialized subtypes of interneurons.

These findings may serve as a model to study human diseases in which mature interneurons malfunction, according to Kriegstein. The researchers' methods may also be used to generate vast numbers of human MGE cells in quantities sufficient to launch potential future clinical trials, he said.

Previously, UCSF researchers led by Allan Basbaum, PhD, chair of anatomy at UCSF, have used mouse MGE cell transplantation into the mouse spinal cord to reduce neuropathic pain, a surprising application outside the brain.

Kriegstein, Nicholas and colleagues now are exploring the use of human MGE cells in mouse models of neuropathic pain and spasticity, Parkinson's disease and epilepsy.

The researchers also plan to develop MGE cells from induced pluripotent stem cells derived from skin cells of individuals with autism, epilepsy, schizophrenia and Alzheimer's disease, in order to investigate how the development and function of interneurons might become abnormal - creating a lab-dish model of disease.

One mystery and challenge to both the clinical and pre-clinical study of human MGE cells is that they develop at a slower, human pace, reflecting an "intrinsic clock". In fast-developing mice, the human MGE-like cells still took seven to nine months to form interneuron subtypes that normally are present near birth.

"If we could accelerate the clock in human cells, then that would be very encouraging for various applications," Kriegstein said.

The experiments have been described in a recent edition of Cell Stem Cell.

Source: ANI
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Advertisement
News Category
What's New on Medindia
January is the Thyroid Awareness Month in 2022
Menstrual Disorders
Coffee May Help You Fight Endometrial Cancer
View all

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Parkinsons Disease Parkinsons Disease Surgical Treatment Brain Brain Facts Ataxia Language Areas in The Brain Ways to Improve your Intelligence Quotient (IQ) 

Recommended Reading
Seizures in Epileptic Mice Halted by Brain Cell Transplant
Transplantation of medial ganglionic eminence (MGE) cells into the hippocampus has been used by ......
Drug to Treat Brain Disease Tested By Canada And Uganda
Canada is funding testing in Uganda of a popular off-patent antidepressant drug. It is used to ......
Study Sheds Light on Effects of Astrocytes on Brain Function
A team of American researchers has shed more light on how the brain function benefits from ......
Mutation Driving Pediatric Brain Tumors Identified
A lethal brain tumor in children has been found to contain an unusual mutation that may help to ......
Ataxia
Ataxia affects coordination. Gait becomes unstable and the patient loses balance. The cerebellum or ...
Language Areas in The Brain
The mechanism of how human brain processes the language to express and comprehend the verbal, writte...
Parkinsons Disease
Parkinson’s disease is a neurodegenerative disease caused by progressive dopamine brain cells loss. ...
Ways to Improve your Intelligence Quotient (IQ)
Intelligence quotient (IQ) is a psychological measure of human intelligence. Regular physical and me...

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2022

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use
open close
ASK A DOCTOR ONLINE
I have read and I do accept terms of use - Telemedicine

Advantage Medindia: FREE subscription for 'Personalised Health & Wellness website with consultation' (Value Rs.300/-)