Taranis binds to a known sleep regulator protein called Cyclin A and inactivates Cdk1, whose normal function is to suppress sleep and promote wakefulness.
The difference in how much sleep individuals need is largely due to genetic variability, says a new research. The researchers report that two genes are required for normal slumber in fly models of sleep: taranis and Cyclin-dependent kinase 1 (Cdk1).
"Our research elucidates a new molecular pathway and a novel brain area that plays a role in controlling how long we sleep," said senior study author Kyunghee Koh, assistant professor of Neuroscience at the US's Thomas Jefferson University.
"There is a lot we do not understand about sleep, especially when it comes to the protein machinery that initiates the process on the cellular level."
The researchers examined thousands of mutant fly lines and found a mutant, called Taranis, which slept a lot less than normal flies.
The researchers tracked how taranis interacted with other proteins and saw that taranis bound to a known sleep regulator protein called Cyclin A.
Their data suggests that Taranis and Cyclin A create a molecular machine that inactivates Cdk1, whose normal function is to suppress sleep and promote wakefulness.
Advertisement
Koh and colleagues showed that these neurons are located in an area of the fly brain that corresponds with the human hypothalamus - one of the sleep centers of the human brain.
Advertisement
"We think this may be an arousal center in the fly brain that Taranis helps inhibit during sleep."
Although the taranis protein has a human cousin, called the Trip-Br family of transcriptional regulators, it is yet unclear whether a similar system is at play in humans.
The study was published online in the journal Current Biology.
Source-IANS