About Careers MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

Researchers Decode Mechanics of Resistance in Melanoma Cells

by Kathy Jones on September 22, 2013 at 8:12 PM
Font : A-A+

 Researchers Decode Mechanics of Resistance in Melanoma Cells

Over time, metastatic cancer cells in melanoma inevitably develop resistance to drugs despite the success of recently approved therapies for the condition.

In the journal Cell Reports, a team of researchers based at The Wistar Institute, report on the mechanics by which melanoma can evolve resistance to a powerful combination of drugs—BRAF and MEK inhibitors.

Advertisement

They found that resistant melanomas acquired a mutation in the MEK2 gene and multiple copies of the mutant BRAF oncogene, simultaneously decreasing the sensitivity to both drug targets. Their findings also uncovered a new potential target for melanoma therapy, a protein called S6K. Additionally, early studies in a laboratory model for melanoma show that a triple combination of drug inhibitors halted the growth of resistant tumors.

"Melanoma tumors are particularly adept at rewiring themselves so that anticancer drugs lose their effectiveness, and we must continue to outthink the disease in order to block off all points at which it can evade therapy," said Jessie Villanueva, Ph.D., assistant professor in Wistar's NCI-designated Cancer Center and member of The Wistar Institute Melanoma Research Center. "There are currently therapeutics available that can block the pathway that leads to S6K, but we are also interested in developing inhibitors to S6K itself."
Advertisement

Melanoma is the deadliest, most aggressive form of skin cancer. While surgical treatment of early-stage melanoma leads to 90 percent cure rates, advanced melanoma is notoriously resistant to chemotherapy and has a tendency to metastasize, or spread, throughout the body. According to the World Health Organization, cases of the disease continue to rise internationally, which has helped spur research into therapies such as BRAF and MEK inhibitors.

BRAF inhibitors were developed in response to discoveries that a specific mutation in the BRAF gene was responsible for nearly 50 percent of melanoma cases. The BRAF protein is part of the MAP kinase pathway, a chain of enzymatic reactions—including the enzyme MEK—that is commonly over-activated in cancers.

"Combining BRAF and MEK inhibitors was conceived as a one-two punch against the MAP kinase pathway," Villanueva said, "and while it is considered successful in the clinic, some tumors do not respond and others develop resistance, underscoring the need for new therapeutic strategies."

As cancer clinicians began to see patients develop resistance to BRAF and MEK inhibitors, the Wistar team began to explore the mechanisms by which tumors develop resistance. They found that melanoma cells used different tactics for each enzyme. Mutations in MEK2, for example, would render anti-MEK therapies ineffective. To defeat BRAF inhibitors, surviving melanoma cells exhibited numerous copies of the mutant BRAF gene, enough to overpower anti-BRAF drugs.

"There were simply too many copies of BRAF to block, it became a numbers game and the mutation was winning," Villanueva said. "Increasing the dosage of BRAF inhibitors could be one solution, but that cannot be done in patients without causing serious toxic effects."

A possible answer, they reasoned, was in the PI3K/mTOR pathway, a network of signaling enzymes often active within melanoma cells. However, they could find no sign that any of the "usual suspects"—points along the pathway commonly known to be involved in cancers—had any evident part in BRAF/MEK resistance. It was not until they examined farther "downstream" that they found persistent activation of S6K, an enzyme that appears to be at the point where P13K/mTOR and MAP kinase pathways merge.

So the researchers tried combinations of inhibitors against BRAF, MEK and PI3K/mTOR (as there are currently no effective S6K inhibitors) in a mouse model of melanoma. "With a triple combination of drugs, the tumors slow down and just stop growing," Villanueva explained.

Although a cocktail of two drugs (a combination of BRAF and PI3K/mTOR inhibitors, for example) might work, they postulated that using three drugs could be more potent and counter intuitively less toxic at the same time. "We followed these mice with melanoma for three weeks, tumors remain stable, and mice did not show any evident signs of toxicity, " Villanueva said

"For patients, it is not a simple matter of introducing triple combination therapies into use," Villanueva said, " but now we have a mechanism and a rational approach to develop both new drugs and more effective combinations aimed at solving drug resistance in melanoma. Our findings might also offer important lessons for other forms of metastatic cancer."



Source: Eurekalert
Advertisement

Advertisement
Advertisement

Recommended Reading

Latest Cancer News

Is Adding Ribociclib to Hormone Therapy Improves Breast Cancer Outcomes
In patients with breast cancer combination therapy had increased invasive disease-free survival compared to those who were treated with the hormone therapy alone.
Antibody Treatment Proves Effective for Bile Duct Cancers
An antibody treatment helped shrink tumors in some patients with bile duct cancers.
Link Between Gut Microbiome and Precancerous Colon Polyps Identified
Comprehending the association between the gut microbiome and polyp growth sheds insights into potential screenings and treatments.
 Analyzing Paediatric Brain Tumours Provide Data for Cancer Research
The first large-scale, collaborative, open analysis of genomic data provides a cloud-based resource for researchers looking for more comprehensive data on pediatric brain tumors.
Cancer Drugs to be Tested in Orbit During American Private Astronaut Mission
The mission of Axiom Space incorporated numerous experiments focusing on human stem cell aging, inflammation, and cancer within the laboratory situated in the low Earth orbit.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
×

Researchers Decode Mechanics of Resistance in Melanoma Cells Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests