Possible Targets for Alzheimer's Disease Treatment

by Rishika Gupta on  February 28, 2018 at 12:31 PM Research News
RSS Email Print This Page Comment bookmark
Font : A-A+

New insights related to tau phosphorylation related targets for Alzheimer's disease treatment are being discussed in the study. Tau protein accumulations are known to be the cause of the Alzheimer's disease. The findings of this study are published in PLOS ONE journal.
Possible Targets for Alzheimer's Disease Treatment
Possible Targets for Alzheimer's Disease Treatment

There is still no clear understanding what is the driving force of AD progression. The main hypotheses of the pathology are based on amyloid beta plaques or tau protein aggregation.

Show Full Article


Tau protein (or MAPT, microtubule-associated protein tau) stabilizes the cytoskeleton in normal cells, but it doesn't function properly in neurons of AD patients, it undergoes hyperphosphorylation and aggregates into neurofibrillary tangles within neurons.

Normally, only some of the numerous phosphorylation sites of tau are phosphorylated. Therefore drugs for the tauopathies treatment could target pathological tau phosphorylation.

Different phosphorylation states contribute unequally in the pathology. So understanding the relative contribution of each kinase and phosphatase to phosphorylation of distinct sites is important for searching the principal drug targets. This was the goal of the work.

If a protein has n phosphorylation sites, then there are 2n possible phosphorylation states. Furthermore, the sequence of protein phosphorylation and dephosphorylation processes is regulated in a complicated way. The model developers assumed that phosphorylation of distinct sites is partially independent. It allowed to overcome the combinatorial explosion problem.

Four kinases (GSK3β, PKA, CDK5, and p38γ) and one phosphatase (PP2A) were selected from the plurality of tau (de)phosphorylating enzymes. Ten phosphorylation sites which are of specific interest for the clinical research were selected from a few dozens of potentially phosphorylable sites of tau protein.

This selection was based on the published experimental data. The modelers also have incorporated so-called pseudo residue which described phosphorylation sites aside from the ten described above. This is the first effort of estimation of tau protein state sensitivity to key enzymes using real kinetic data.

"We've taken the first step in the understanding of (de)phosphorylation patterns of each tau protein residue by different enzymes. Our model may suggest the role of each tau kinase or phosphatase plays in AD pathogenesis as well as the most potent targets for its treatment," commented Alexander Stepanov, the leading contributor to the article.

Source: Eurekalert

Post a Comment

Comments should be on the topic and should not be abusive. The editorial team reserves the right to review and moderate the comments posted on the site.
Notify me when reply is posted
I agree to the terms and conditions

News A - Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

News Search

Medindia Newsletters

Subscribe to our Free Newsletters!

Terms & Conditions and Privacy Policy.

Stay Connected

  • Available on the Android Market
  • Available on the App Store

News Category

News Archive