About Careers Internship MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

Novel Form of Microscopy Provides Real-time Data of Cell Membrane Dynamics

by Anjali Aryamvally on June 4, 2018 at 4:57 PM
Novel Form of Microscopy Provides Real-time Data of Cell Membrane Dynamics

A new form of microscopy developed at the Beckman Institute for Advanced Science and Technology and the Micro and Nanotechnology Laboratory at the University of Illinois allows scientists to observe the formation and evolution of cell membrane focal adhesions. The study published in Light: Science & Applications details how the new live cell imaging technique can observe the formation and evolution of cell membrane focal adhesions.

Focal adhesions are large specialized proteins that are located in the area where a cell membrane meets the extracellular matrix (ECM), a collection of molecules surrounding the cells that provide support and regulate micromechanical signals to the cells. Examining focal adhesions is one of the key elements to understanding how a cell proliferates, differentiates, and migrates--which can help in the treatment of diseases like cancer.

Advertisement


"This is a new kind of biophysics method used to measure the peak intensity shift (PIS) of the spectra reflected from the biomaterials on a photonic crystal surface," said Yue Zhuo, a Beckman Institute Postdoctoral Fellow and first author on the paper. "The PIS indicates the variation of cluster size in the focal adhesion area of the cell while it's alive."

Previous methods involve labeling the cells with fluorescent dyes or tags, which not only can change the physical and chemical makeup of the cell, but also can prove cumbersome for researchers. "Typically people look at focal adhesions with fluorescent tags or proteins," Zhuo said. "But fluorescent imaging is an invasive imaging method that may change the conformations or block the binding sites of the proteins in the focal adhesion area."
Advertisement

Fluorescence microscopy is severely limited by an effect called "photobleaching," in which the fluorophores only maintain their brightness for several seconds. However, many important cell processes occur over the course of minutes, hours, or days. Because PROM does not use fluorophores, and only uses low-intensity illumination, there is not a limit to how long live cells can be measured.

"In the future, we plan to use PROM to study stem cell differentiation, which can occur over the course of several weeks," said Zhuo.

PROM utilizes a photonic crystal biosensor surface to create an evanescent field (a surface-bound electromagnetic field), which selectively illuminates only the ECM-attached cell membrane and associated protein aggregates directly inside the cell membrane. The photonic crystal strictly limits lateral propagation of light while keeping light tightly bound to the biosensor surface, to enable high-resolution imaging of the cell membrane attachment footprint.

"PROM is providing real-time information about dynamic processes that occur specifically on cell membranes that is not available by any other method," said Brian Cunningham, a professor of electrical and computer engineering and bioengineering, and the principle investigator for the PROM project. "Since so many biological processes are mediated through attachment of cells to surfaces, PROM provides a unique view of migration, chemotaxis, chemotoxicity, differentiation, biofilm formation, and division. We see PROM as an exciting new tool for cell biologists that can also be applied towards personalized anticancer drug selection, tissue engineering, and sensor-integrated tumor modeling."



Source: Eurekalert
Font : A-A+

Advertisement

Advertisement
Advertisement

Latest Research News

Brain Circuits That Shape Bedtime Rituals in Mice
New study sheds light on the intrinsic, yet often overlooked, role of sleep preparation as a hardwired survival strategy.
NELL-1 Protein Aids to Reduce Bone Loss in Astronauts
Microgravity-induced bone loss in space, can be reduced by systemic delivery of NELL-1, a protein required for bone growth and its maintenance.
Connecting Genetic Variants to the Alzheimer's Puzzle
Researchers establish connections between Alzheimer's-linked genetic alterations and the functioning of brain cells.
Gene Therapy Sparks Spinal Cord Regeneration
Team at NeuroRestore introduces a groundbreaking gene therapy that has effectively promoted nerve regrowth and reconnection, post spinal cord injury.
Unlocking the Gut Microbiome's Influence on Bone Density
Scientists aim to pinpoint particular functional pathways affected by these bacteria that may have an impact on skeletal health.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
MediBotMediBot
Greetings! How can I assist you?MediBot
×

Novel Form of Microscopy Provides Real-time Data of Cell Membrane Dynamics Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests