About My Health Careers Internship MedBlogs Contact us
Medindia LOGIN REGISTER
Advertisement

Notch Signaling Pathway Keeps Immature T Cells on the Right Track

by Bidita Debnath on November 24, 2013 at 11:33 PM
Font : A-A+

 Notch Signaling Pathway Keeps Immature T Cells on the Right Track

For many years, Avinash Bhandoola, PhD, professor of Pathology and Laboratory Medicine, has studied the origins of T cells.

One protein called Notch, which has well-known roles in the development of multiple tissues, plays an essential role in triggering T-cell development. T cells are immune cells that are made in the thymus, a small organ situated under the breastbone near the heart. However, T cells, like all blood-cell types, originate from blood-producing stem cells in the bone marrow. Immature T-cell progenitors leave the bone marrow, settle within the thymus, and eventually give rise to T cells.

Advertisement

With graduate student Maria Elena De Obaldia, Bhandoola describes in Nature Immunology this month how Notch signaling induces expression of genes that promote the maturation of T cells and discourage alternative cell fates. Deficiency of the Notch target gene Hes1 in blood stem cells results in extremely low T-cell numbers, but the underlying mechanism is unknown. Keeping in mind that Notch signaling gone awry induces leukemia, De Obaldia notes that "understanding the Notch pathway on a molecular level can shed light on how normal cells are transformed in the context of cancer."

The current study describes the mechanism of action of Hes1, a repressor protein that acts in the nucleus of immature T cells in the thymus. De Obaldia and Bhandoola found that Hes1 turns off genes such as C/EBPalpha, which promote the myeloid-cell fate and antagonize the T-cell fate. Whereas Hes1-deficient mice show severe T-cell defects, deleting the myeloid gene C/EBPalpha could restore normal T-cell development. This provided evidence that Hes1 keeps immature T cells on track by preventing them from defaulting to a myeloid developmental pathway, which controls non-lymphocyte cell maturation.
Advertisement

Because of this "policing" function, De Obaldia likens Hes1 to the traffic cop of T-cell development: "T-cell leukemias are addicted to Hes1, perhaps because it keeps progenitor cells on the path to producing more T cells, as opposed to myeloid cells. Bhandoola adds, "Our findings establish the importance of constraining myeloid developmental programs early in T-cell development, and this knowledge may provide clues about how to stop T-cell leukemias." Future studies will address whether Hes1 serves a similar function in Notch-dependent, T-cell leukemias by repressing myeloid genes, as it does during normal T-cell development.

Source: Eurekalert
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
News Category
What's New on Medindia
Sensory Processing Disorder (SPD)
First Dose of COVID-19 Vaccines May Improve Mental Health
View all

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Parkinsons Disease Surgical Treatment 

Recommended Reading
Brown Fat Cells Have Potential for Treating Diabetes and Obesity
In the last decade or so, obesity and diabetes have become a global epidemic leading to severe ......
Method to Convert Fat Cells into Liver Cells Developed by Stanford Researchers
Researchers at Stanford University School of Medicine have managed to develop a fast and efficient ....
Method Used By Heart Cells To Regulate Heart Activity Discovered By Research
New research from Western University (London, Canada) is leading to a better understanding of what ....
Origin of Brown Fat Cells Important in Weight Maintenance Identified
Researchers at UT Southwestern Medical Center have identified how new fat cells are formed in ......

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2021

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use